论文标题

缩小语义差距:当地力矩不变的空间集合用于复制移动检测

Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants for Copy-Move Forgery Detection

论文作者

Wang, Chao, Huang, Zhiqiu, Qi, Shuren, Yu, Yaoshen, Shen, Guohua, Zhang, Yushu

论文摘要

复制伪造是对图像的复制和粘贴特定斑块的操纵,并具有潜在的非法或不道德用途。伪造伪造的法医方法的最新进展显示出在检测准确性和鲁棒性方面的成功越来越大。但是,对于具有较高自相似性或强烈信号损坏的图像,现有算法通常表现出效率低下的过程和不可靠的结果。这主要是由于低级视觉表示与高级语义概念之间的固有语义差距。在本文中,我们提出了一项最初的研究,该研究试图减轻复制移动伪造检测中的语义差距问题,并通过空间汇总当地力矩不变性以用于中级图像表示。我们的检测方法将传统作品扩展到两个方面:1)我们首次将视野模型介绍给了这一领域,这可能意味着法医研究的新观点; 2)我们提出了一个单词到短语功能描述和匹配管道,涵盖了数字图像的空间结构和视觉显着性信息。广泛的实验结果表明,在克服语义差距引起的相关问题时,我们的框架比最先进的算法表现出色。

Copy-move forgery is a manipulation of copying and pasting specific patches from and to an image, with potentially illegal or unethical uses. Recent advances in the forensic methods for copy-move forgery have shown increasing success in detection accuracy and robustness. However, for images with high self-similarity or strong signal corruption, the existing algorithms often exhibit inefficient processes and unreliable results. This is mainly due to the inherent semantic gap between low-level visual representation and high-level semantic concept. In this paper, we present a very first study of trying to mitigate the semantic gap problem in copy-move forgery detection, with spatial pooling of local moment invariants for midlevel image representation. Our detection method expands the traditional works on two aspects: 1) we introduce the bag-of-visual-words model into this field for the first time, may meaning a new perspective of forensic study; 2) we propose a word-to-phrase feature description and matching pipeline, covering the spatial structure and visual saliency information of digital images. Extensive experimental results show the superior performance of our framework over state-of-the-art algorithms in overcoming the related problems caused by the semantic gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源