论文标题
HOPF边界附近的洛伦兹振荡器的集体动力学:间歇性和嵌合体状态
Collective Dynamics of coupled Lorenz oscillators near the Hopf Boundary: Intermittency and Chimera states
论文作者
论文摘要
我们研究了亚临界霍夫夫分叉附近相互耦合相同的洛伦兹振荡器网络的集体动力学。该系统显示具有有趣的时空动力学,包括同步,去同步和嵌合体状态,显示了引起的多稳定行为。我们发现,由于复杂的盆地结构,该网络可能表现出间歇性的行为,在其中,在不同吸引子之间合奏开关中振荡器的时间动力学。因此,不同的振荡器可能会显示出间歇性同步(或不同步)的动力学,从而产生{\ it间歇性嵌合体状态}。间歇性层流阶段的行为的特征是在同步歧管中花费的特征时间,后者衰减为幂律。这种间歇性动力学非常通用,可以扩展到与非本地,全局和局部耦合方案相互作用的大量振荡器。
We study collective dynamics of networks of mutually coupled identical Lorenz oscillators near subcritical Hopf bifurcation. This system shows induced multistable behavior with interesting spatio-temporal dynamics including synchronization, desynchronization and chimera states. We find this network may exhibit intermittent behavior due to the complex basin structures, where, temporal dynamics of the oscillators in the ensemble switches between different attractors. Consequently, different oscillators may show dynamics that is intermittently synchronized (or desynchronized), giving rise to {\it intermittent chimera states}. The behaviour of the intermittent laminar phases is characterized by the characteristic time spend in the synchronization manifold, which decays as power law. This intermittent dynamics is quite general and can be extended for large number of oscillators interacting with nonlocal, global and local coupling schemes.