论文标题

戈德巴赫(Goldbach)的出色设置几乎是双胞胎素数

The Exceptional Set in Goldbach's Problem with Almost Twin Primes

论文作者

Grimmelt, Lasse, Teräväinen, Joni

论文摘要

我们考虑了二进制戈德巴赫问题中的出色设置,其中两个几乎是双胞胎素数的总和。我们的主要结果是在代表$ M = P_1+P_2 $的问题中为特殊设置提供了省电,其中$ P_1+2 $最多具有$ 2 $ PRIME DIVISOR,而$ P_2+2 $最多有$ 3 $ PRIME DIVISORS。证明中有三种主要成分:一种新的转移原理,例如筛的方法,结合了bombieri-friedlander-iwaniec和Maynard的分布估计水平,其中包括drappeau的想法,以产生节省动力,以及circle方法的概括蒙特哥马利和沃恩的参数。

We consider the exceptional set in the binary Goldbach problem for sums of two almost twin primes. Our main result is a power-saving bound for the exceptional set in the problem of representing $m=p_1+p_2$ where $p_1+2$ has at most $2$ prime divisors and $p_2+2$ has at most $3$ prime divisors. There are three main ingredients in the proof: a new transference principle like approach for sieves, a combination of the level of distribution estimates of Bombieri--Friedlander--Iwaniec and Maynard with ideas of Drappeau to produce power savings, and a generalisation of the circle method arguments of Montgomery and Vaughan that incorporates sieve weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源