论文标题

使用装袋树的振幅闪烁预测

Amplitude Scintillation Forecasting Using Bagged Trees

论文作者

Darya, Abdollah Masoud, Al-Owais, Aisha Abdulla, Shaikh, Muhammad Mubasshir, Fernini, Ilias

论文摘要

电离层中存在的电子密度不规则性会引起全球导航卫星系统(GNSS)信号的显着波动。信号功率的波动称为振幅闪烁,可以通过S4指数监测。在实时数据不可用时,预测基于历史S4索引数据的幅度闪烁的严重性将是有益的。在这项工作中,我们研究了使用单个GPS闪烁监测接收器中使用历史数据来训练机器学习(ML)模型的可能性,以预测有关时间和空间参数的振幅闪烁的严重性,即弱,中度或重度。评估了六种不同的ML型号,并使用平衡数据集评估了最准确的树木模型,使用不平衡的数据集获得了预测准确性$ 81 \%$,而$ 97 \%$ $。

Electron density irregularities present within the ionosphere induce significant fluctuations in global navigation satellite system (GNSS) signals. Fluctuations in signal power are referred to as amplitude scintillation and can be monitored through the S4 index. Forecasting the severity of amplitude scintillation based on historical S4 index data is beneficial when real-time data is unavailable. In this work, we study the possibility of using historical data from a single GPS scintillation monitoring receiver to train a machine learning (ML) model to forecast the severity of amplitude scintillation, either weak, moderate, or severe, with respect to temporal and spatial parameters. Six different ML models were evaluated and the bagged trees model was the most accurate among them, achieving a forecasting accuracy of $81\%$ using a balanced dataset, and $97\%$ using an imbalanced dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源