论文标题

方孔流体:热力学几何视图

The square-well fluid: a thermodynamic geometric view

论文作者

López-Picón, J. L., Escamilla-Herrera, L. F., Torres-Arenas, J.

论文摘要

在热力学几何形状(TG)的框架内研究了带有硬球直径的方孔流体。使用几何方法仔细研究了共存和旋转曲线,以及$λ^{*} = 1.25、1.5、2.0、3.0 $范围的宽线。我们能够证明,与共存曲线不同,可以沿所有热力学空间给出确切的结果,并为Spinodal曲线的所有潜在范围给出。此外,定义为曲率标量极端位点的$ r $ widom线是作为潜在范围的函数计算的,在临界点附近满足了一种clausius-clapeyron方程。有人认为,这种关系可能是越过Widom线边界时某些类型的特征相变的签名。

The square-well fluid with hard-sphere diameters is studied within the framework of Thermodynamic Geometry (TG). Coexistence and spinodal curves, as well as the Widom line for ranges $λ^{*} = 1.25, 1.5, 2.0, 3.0$ for this fluid are carefully studied using geometric methods. We are able to show that, unlike coexistence curves, an exact result can be given along all the thermodynamic space and for all potential ranges for spinodal curves. Additionally, $R$-Widom line which is defined as the locus of extrema of the curvature scalar is calculated as a function of the potential range, satisfying near the critical point a kind of Clausius-Clapeyron equation. It is argued that this relation could be a signature of certain type of characteristic phase transition when crossing the boundary of the Widom line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源