论文标题

更高程度的Erdos-Ginzburg-Ziv常数

Higher Degree Erdos-Ginzburg-Ziv Constants

论文作者

Caro, Yair, Schmitt, John R.

论文摘要

我们将Erdős-Ginzburg-Ziv常数的概念(按照我们在早期工作中的相同线上)到``较高程度''到“高度”,并获得各种较小和上限。有时这些界限有时与某些有限的电力杆的有限态度一样严格,我们还考虑到了prime cardenatity的某些有限态度。参数扩展到了这两个简单的示例,这些示例捕获了这些更高的eRDőS-GINZBURG-ZIV常数,以下是$ν_p(M)。 $ s $ over $ {\ mathbb z} _2 $ length $ | s | \ geq n $包含$ \ sum_ {a_ {i_1},\ ldots,\ ldots的$ s'$ s'$ s'$ t $ \ pmod {2} $,这是尖锐的。 S'} a_ha_ia_j \ equiv 0 \ pmod {3} $。超过$ {\ Mathbb z} _n $包含一个子序列$ s'=(a_1,\ ldots,a_n)的长度$ n $的长度$ n $,当用线性对称多项式$ a_1+\ cdots+cdots+cdots+a_n。

We generalize the notion of Erdős-Ginzburg-Ziv constants -- along the same lines we generalized in earlier work the notion of Davenport constants -- to a ``higher degree" and obtain various lower and upper bounds. These bounds are sometimes exact as is the case for certain finite commutative rings of prime power cardinality. We also consider to what extent a theorem due independently to W.D.~Gao and the first author that relates these two parameters extends to this higher degree setting. Two simple examples that capture the essence of these higher degree Erdős-Ginzburg-Ziv constants are the following. 1) Let $ν_p(m)$ denote the $p-$adic valuation of the integer $m$. Suppose we have integers $t | {m \choose 2}$ and $n=t+2^{ν_2(m)}$, then every sequence $S$ over ${\mathbb Z}_2$ of length $|S| \geq n$ contains a subsequence $S'$ of length $t$ for which $\sum_{a_{i_1},\ldots, a_{i_m} \in S'} a_{i_1}\cdots a_{i_m} \equiv 0 \pmod{2}$, and this is sharp. 2) Suppose $k=3^α$ for some integer $α\geq 2$. Then every sequence $S$ over ${\mathbb Z}_3$ of length $|S| \geq k+6$ contains a subsequence $S'$ of length $k$ for which $\sum_{a_h, a_i, a_j \in S'} a_ha_ia_j \equiv 0 \pmod{3}$. These examples illustrate that if a sequence of elements from a finite commutative ring is long enough, certain symmetric expressions (symmetric polynomials) have to vanish on the elements of a subsequence of prescribed length. The Erdős-Ginzburg-Ziv Theorem is just the case where a sequence of length $2n-1$ over ${\mathbb Z}_n$ contains a subsequence $S'=(a_1, \ldots, a_n)$ of length $n$ that vanishes when substituted in the linear symmetric polynomial $a_1+\cdots+a_n.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源