论文标题
一种基于图的算法,用于可鲁棒的定位,利用多径以减轻阻塞的偏置缓解
A Graph-based Algorithm for Robust Sequential Localization Exploiting Multipath for Obstructed-LOS-Bias Mitigation
论文作者
论文摘要
本文提出了一个因子图公式和基于粒子的总和产物算法(SPA),用于在多路径易于的环境中进行稳健的顺序定位。所提出的算法共同执行数据关联,移动代理位置的顺序估计,并适应所有相关的模型参数。我们得出了一种新型的非均匀虚假警报(FA)模型,该模型捕获了多径无线电通道的延迟和幅度统计。该模型使该算法能够间接利用多径组件(MPC)中包含的与位置相关的信息,以估算代理位置,而无需使用任何先前的信息,例如平面图信息或培训数据。使用在不同渠道条件下的模拟和实际测量结果,我们证明该算法即使在完全阻碍的视线(OLOS)情况下也可以提供高临界位置估计值,并表明我们的算法的性能不断获得后Cramer-Rao后rao下限(P-CRLB)(P-CRLB)(P-CRLB),促进了其他信息,包括其他信息。该算法被证明可以在密集的多径通道以及显示镜面已解决的MPC的通道中提供可靠的估计,从而明显优于最先进的基于无线电的本地化方法。
This paper presents a factor graph formulation and particle-based sum-product algorithm (SPA) for robust sequential localization in multipath-prone environments. The proposed algorithm jointly performs data association, sequential estimation of a mobile agent position, and adapts all relevant model parameters. We derive a novel non-uniform false alarm (FA) model that captures the delay and amplitude statistics of the multipath radio channel. This model enables the algorithm to indirectly exploit position-related information contained in the multipath components (MPCs) for the estimation of the agent position without using any prior information such as floorplan information or training data. Using simulated and real measurements in different channel conditions, we demonstrate that the algorithm can provide high-accuracy position estimates even in fully obstructed line-of-sight (OLOS) situations and show that the performance of our algorithm constantly attains the posterior Cramer-Rao lower bound (P-CRLB), facilitating the additional information contained in the presented FA model. The algorithm is shown to provide robust estimates in both, dense multipath channels as well as channels showing specular, resolved MPCs, significantly outperforming state-of-the-art radio-based localization methods.