论文标题

多视图图像超分辨率的几何感知参考综合

Geometry-Aware Reference Synthesis for Multi-View Image Super-Resolution

论文作者

Cheng, Ri, Sun, Yuqi, Yan, Bo, Tan, Weimin, Ma, Chenxi

论文摘要

高分辨率(HR)视觉体验与存储或带宽约束之间的最近多视图多媒体应用程序。因此,本文提出了一个多视图图像超分辨率(MVISR)任务。它旨在增加从同一场景捕获的多视图图像的分辨率。一种解决方案是将图像或视频超分辨率(SR)方法应用于低分辨率(LR)输入视图结果。但是,这些方法无法处理所有多视图图像中视图之间的大角度转换,并利用信息。为了解决这些问题,我们提出了MVSRNET,该MVSRNET使用几何信息从所有LR多视图中提取尖锐的细节,以支持LR输入视图的SR。具体而言,MVSRNET中提出的几何感知参考合成模块使用几何信息和所有多视图LR图像来综合像素对齐的HR参考图像。然后,提出的动态高频搜索网络完全利用了SR参考图像中的高频纹理细节。几个基准的广泛实验表明,我们的方法在最先进的方法上有了显着改善。

Recent multi-view multimedia applications struggle between high-resolution (HR) visual experience and storage or bandwidth constraints. Therefore, this paper proposes a Multi-View Image Super-Resolution (MVISR) task. It aims to increase the resolution of multi-view images captured from the same scene. One solution is to apply image or video super-resolution (SR) methods to reconstruct HR results from the low-resolution (LR) input view. However, these methods cannot handle large-angle transformations between views and leverage information in all multi-view images. To address these problems, we propose the MVSRnet, which uses geometry information to extract sharp details from all LR multi-view to support the SR of the LR input view. Specifically, the proposed Geometry-Aware Reference Synthesis module in MVSRnet uses geometry information and all multi-view LR images to synthesize pixel-aligned HR reference images. Then, the proposed Dynamic High-Frequency Search network fully exploits the high-frequency textural details in reference images for SR. Extensive experiments on several benchmarks show that our method significantly improves over the state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源