论文标题

在Castelnuovo-Mumford在Edge Ideass的无平方势力的规律性

On the Castelnuovo-Mumford regularity of squarefree powers of edge ideals

论文作者

Fakhari, S. A. Seyed

论文摘要

假设$ g $是带有edge Idex $ i(g)$的图形和匹配的数字$ {\ rm match}(g)$。对于每个整数$ s \ geq 1 $,我们表示$ s $ th squareFree $ i(g)$ by $ i(g)^{[s]} $。 It is shown that for every positive integer $s\leq {\rm match}(G)$, the inequality ${\rm reg}(I(G)^{[s]})\leq {\rm match}(G)+s$ holds provided that $G$ belongs to either of the following classes: (i) very well-covered graphs, (ii) semi-Hamiltonian graphs, or (iii)顺序的Cohen-Macaulay图。此外,我们证明,对于每个Cameron-Walker Graph $ g $,对于每个正整数$ s \ leq {\ rm match}(g)$,我们都有$ {\ rm reg}(i(g)^{[s} {[s]})= {\ rm match}(g)+S $

Assume that $G$ is a graph with edge ideal $I(G)$ and matching number ${\rm match}(G)$. For every integer $s\geq 1$, we denote the $s$-th squarefree power of $I(G)$ by $I(G)^{[s]}$. It is shown that for every positive integer $s\leq {\rm match}(G)$, the inequality ${\rm reg}(I(G)^{[s]})\leq {\rm match}(G)+s$ holds provided that $G$ belongs to either of the following classes: (i) very well-covered graphs, (ii) semi-Hamiltonian graphs, or (iii) sequentially Cohen-Macaulay graphs. Moreover, we prove that for every Cameron-Walker graph $G$ and for every positive integer $s\leq {\rm match}(G)$, we have ${\rm reg}(I(G)^{[s]})={\rm match}(G)+s$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源