论文标题

在线总完成时间安排在并行相同的机器上

Online Total Completion Time Scheduling on Parallel Identical Machines

论文作者

Schwiegelshohn, Uwe

论文摘要

我们调查确定性的非抢先在线调度,并延迟承诺,以最大程度地减少并行相同机器的总完成时间。在这个问题中,工作一对一到达,到达时他们的处理时间会揭示。在线算法到达后的任何时候可以将作业分配给机器。我们既不允许先发制人,也不允许工作的重新启动,也就是说,一旦开始,该工作就占据了分配的机器直到完成。我们的目标是最小化所有工作的完成时间的总和。在问题的更一般的加权版本中,我们将工作的完成时间乘以工作的个人权重。我们应用竞争分析来评估我们的算法。 我们通过优化简单的工作模式来提高25岁的下限该问题的竞争比率。这些下限随着越来越多的机器数量而降低。根据工作模式,我们开发了一种在线算法,该算法是对并行机器环境的延迟SPT(最短处理时间)的扩展。我们表明,对于任何均匀的机器编号,竞争比最多是1.546,这比以前最著名的竞争比率为1.791。对于两个机器环境,该算法达到了紧密的竞争比率。这是第一种在平行机器环境中最佳解决在线总完成时间问题的算法。最后,我们通过证明在两机电机环境中,加权和未加权版本之间的第一个分离,加权完成时间目标的竞争比率严格大于1.546。

We investigate deterministic non-preemptive online scheduling with delayed commitment for total completion time minimization on parallel identical machines. In this problem, jobs arrive one-by-one and their processing times are revealed upon arrival. An online algorithm can assign a job to a machine at any time after its arrival. We neither allow preemption nor a restart of the job, that is, once started, the job occupies the assigned machine until its completion. Our objective is the minimization of the sum of the completion times of all jobs. In the more general weighted version of the problem, we multiply the completion time of a job by the individual weight of the job. We apply competitive analysis to evaluate our algorithms. We improve 25-year-old lower bounds for the competitive ratio of this problem by optimizing a simple job pattern. These lower bounds decrease with growing numbers of machines. Based on the job pattern, we develop an online algorithm which is an extension of the delayed-SPT (Shortest Processing Time first) approach to the parallel machine environment. We show that the competitive ratio is at most 1.546 for any even machine number which is a significant improvement over the best previously known competitive ratio of 1.791. For the two-machine environment, this algorithm achieves a tight competitive ratio. This is the first algorithm which optimally solves an online total completion time problem in a parallel machine environment. Finally, we give the first separation between the weighted and unweighted versions of the problem by showing that in the two-machine environment, the competitive ratio of the weighted completion time objective is strictly larger than 1.546.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源