论文标题

Braincog:一种基于脑网络的尖峰神经网络启发的认知智能引擎,用于脑启发的AI和大脑模拟

BrainCog: A Spiking Neural Network based Brain-inspired Cognitive Intelligence Engine for Brain-inspired AI and Brain Simulation

论文作者

Zeng, Yi, Zhao, Dongcheng, Zhao, Feifei, Shen, Guobin, Dong, Yiting, Lu, Enmeng, Zhang, Qian, Sun, Yinqian, Liang, Qian, Zhao, Yuxuan, Zhao, Zhuoya, Fang, Hongjian, Wang, Yuwei, Li, Yang, Liu, Xin, Du, Chengcheng, Kong, Qingqun, Ruan, Zizhe, Bi, Weida

论文摘要

尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智能引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等组合在一起,作为平台提供的重要模块。基于这些易于使用的模块,Braincog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,BrainCog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组成部分集成并用于构建AI模型和应用。为了使科学的追求解码生物智能的性质并创建AI,BrainCog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑启发的基于大脑的Spiking神经网络AI,并在多个尺度上模拟认知大脑。可以在https://github.com/braincog-x上找到Braincog的在线存储库。

Spiking neural networks (SNNs) have attracted extensive attentions in Brain-inspired Artificial Intelligence and computational neuroscience. They can be used to simulate biological information processing in the brain at multiple scales. More importantly, SNNs serve as an appropriate level of abstraction to bring inspirations from brain and cognition to Artificial Intelligence. In this paper, we present the Brain-inspired Cognitive Intelligence Engine (BrainCog) for creating brain-inspired AI and brain simulation models. BrainCog incorporates different types of spiking neuron models, learning rules, brain areas, etc., as essential modules provided by the platform. Based on these easy-to-use modules, BrainCog supports various brain-inspired cognitive functions, including Perception and Learning, Decision Making, Knowledge Representation and Reasoning, Motor Control, and Social Cognition. These brain-inspired AI models have been effectively validated on various supervised, unsupervised, and reinforcement learning tasks, and they can be used to enable AI models to be with multiple brain-inspired cognitive functions. For brain simulation, BrainCog realizes the function simulation of decision-making, working memory, the structure simulation of the Neural Circuit, and whole brain structure simulation of Mouse brain, Macaque brain, and Human brain. An AI engine named BORN is developed based on BrainCog, and it demonstrates how the components of BrainCog can be integrated and used to build AI models and applications. To enable the scientific quest to decode the nature of biological intelligence and create AI, BrainCog aims to provide essential and easy-to-use building blocks, and infrastructural support to develop brain-inspired spiking neural network based AI, and to simulate the cognitive brains at multiple scales. The online repository of BrainCog can be found at https://github.com/braincog-x.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源