论文标题
正交非肾脏:单向骨传输而不破坏时间转换对称性
Quadrature nonreciprocity: unidirectional bosonic transmission without breaking time-reversal symmetry
论文作者
论文摘要
非交流性意味着信号的传播取决于其传播方向。尽管平台截然不同和基本的工作原理,但线性中非转录传输的实现,与时间无关的系统依赖于几种途径之间的Aharonov-bohm干扰,并且需要破坏时间反向对称性。在这里,我们通过利用Beamsplitter(激发保留)和两种模式 - 平局(激发非推测)之间的干扰来扩展具有时间反转对称性汉密尔顿的系统中的单向骨传输的概念。与标准的非肾脏相反,当相对于外部参考阶段解决模式四倍体时,这种单向运输会表现出来。因此,我们将这种现象的正交非重生化。首先,我们在两种耦合的纳米力学模式的最小系统中实验证明了这一点,这些模式通过光力学相互作用精心策划。接下来,我们开发一个理论框架来表征基于其粒子孔图的特征,表现出表现正交非股发的网络。除了单向性外,这些网络还可以在集体四二次结构之间表现出均匀的配对,我们在四模式系统中通过实验确认,在空腔阵列的情况下指数端到端增益。我们的工作开辟了有关玻感系统中信号路由和量子受限扩增的新途径。
Nonreciprocity means that the transmission of a signal depends on its direction of propagation. Despite vastly different platforms and underlying working principles, the realisations of nonreciprocal transport in linear, time-independent systems rely on Aharonov-Bohm interference among several pathways and require breaking time-reversal symmetry. Here we extend the notion of nonreciprocity to unidirectional bosonic transport in systems with a time-reversal symmetric Hamiltonian by exploiting interference between beamsplitter (excitation preserving) and two-mode-squeezing (excitation non-preserving) interactions. In contrast to standard nonreciprocity, this unidirectional transport manifests when the mode quadratures are resolved with respect to an external reference phase. Hence we dub this phenomenon quadrature nonreciprocity. First, we experimentally demonstrate it in the minimal system of two coupled nanomechanical modes orchestrated by optomechanical interactions. Next, we develop a theoretical framework to characterise the class of networks exhibiting quadrature nonreciprocity based on features of their particle-hole graphs. In addition to unidirectionality, these networks can exhibit an even-odd pairing between collective quadratures, which we confirm experimentally in a four-mode system, and an exponential end-to-end gain in the case of arrays of cavities. Our work opens up new avenues for signal routing and quantum-limited amplification in bosonic systems.