论文标题

用于因果发现的元提升学习算法

A Meta-Reinforcement Learning Algorithm for Causal Discovery

论文作者

Sauter, Andreas, Acar, Erman, François-Lavet, Vincent

论文摘要

因果发现是一项主要任务,对于机器学习至关重要,因为因果结构可以使模型超越基于纯粹的相关推理并显着提高其性能。但是,从数据中找到因果结构在计算工作和准确性方面都构成了重大挑战,更不用说在没有干预的情况下不可能。在本文中,我们开发了一种元强化学习算法,该算法通过学习执行干预措施来构建明确的因果图来执行因果发现。除了对可能的下游应用程序有用外,估计的因果图还为数据生成过程提供了解释。在本文中,我们表明我们的算法估计了与SOTA方法相比,即使在以前从未见过的基本因果结构的环境中也是如此。此外,我们进行了一项消融研究,展示了学习干预措施如何有助于我们方法的整体表现。我们得出的结论是,干预措施确实有助于提高性能,从而有效地对可能是看不见的环境的因果结构进行了准确的估计。

Causal discovery is a major task with the utmost importance for machine learning since causal structures can enable models to go beyond pure correlation-based inference and significantly boost their performance. However, finding causal structures from data poses a significant challenge both in computational effort and accuracy, let alone its impossibility without interventions in general. In this paper, we develop a meta-reinforcement learning algorithm that performs causal discovery by learning to perform interventions such that it can construct an explicit causal graph. Apart from being useful for possible downstream applications, the estimated causal graph also provides an explanation for the data-generating process. In this article, we show that our algorithm estimates a good graph compared to the SOTA approaches, even in environments whose underlying causal structure is previously unseen. Further, we make an ablation study that shows how learning interventions contribute to the overall performance of our approach. We conclude that interventions indeed help boost the performance, efficiently yielding an accurate estimate of the causal structure of a possibly unseen environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源