论文标题

Seplut:可分开的图像自动查找表,用于实时图像增强

SepLUT: Separable Image-adaptive Lookup Tables for Real-time Image Enhancement

论文作者

Yang, Canqian, Jin, Meiguang, Xu, Yi, Zhang, Rui, Chen, Ying, Liu, Huaida

论文摘要

图像自适应查找表(LUTS)由于对颜色变换进行建模的高效率,在实时图像增强任务中取得了巨大的成功。但是,他们以耦合方式将完整的变换嵌入了仅颜色组件独立于颜色的部分和与组件相关的部分,仅以1D或3D的形式嵌入到单一类型的LUT中。由于两个因素,该方案提高了改善模型表现力或效率的困境。一方面,一维LUTS提供了较高的计算效率,但缺乏颜色组件相互作用的关键能力。另一方面,3D LUTS具有增强的组件与转换能力增强,但具有重记忆足迹,高训练难度和有限的细胞利用率。受图像信号处理器中常规的划分和诱导实践的启发,我们提出了塞普拉特(可分开的图像自适应查找表),以应对上述限制。具体而言,我们分别将单个颜色转换为与组件无关和组件相关的子转换的级联反应,分别将其实例化为1D和3D LUTS。这样,两个子转换的功能可以互相促进,其中3D LUT可以补充混合颜色成分的能力,而1D LUT重新分配了输入颜色以增加3D LUT的细胞利用,从而启用了更轻巧的3D LUT的使用。实验表明,所提出的方法比当前的最新方法提出了图片修饰数据集的性能,并在GPU和CPU上实现了实时处理。

Image-adaptive lookup tables (LUTs) have achieved great success in real-time image enhancement tasks due to their high efficiency for modeling color transforms. However, they embed the complete transform, including the color component-independent and the component-correlated parts, into only a single type of LUTs, either 1D or 3D, in a coupled manner. This scheme raises a dilemma of improving model expressiveness or efficiency due to two factors. On the one hand, the 1D LUTs provide high computational efficiency but lack the critical capability of color components interaction. On the other, the 3D LUTs present enhanced component-correlated transform capability but suffer from heavy memory footprint, high training difficulty, and limited cell utilization. Inspired by the conventional divide-and-conquer practice in the image signal processor, we present SepLUT (separable image-adaptive lookup table) to tackle the above limitations. Specifically, we separate a single color transform into a cascade of component-independent and component-correlated sub-transforms instantiated as 1D and 3D LUTs, respectively. In this way, the capabilities of two sub-transforms can facilitate each other, where the 3D LUT complements the ability to mix up color components, and the 1D LUT redistributes the input colors to increase the cell utilization of the 3D LUT and thus enable the use of a more lightweight 3D LUT. Experiments demonstrate that the proposed method presents enhanced performance on photo retouching benchmark datasets than the current state-of-the-art and achieves real-time processing on both GPUs and CPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源