论文标题

在淬火的Kardar-Parisi-Zhang I类中添加:映射,仿真和算法

Depinning in the quenched Kardar-Parisi-Zhang class I: Mappings, simulations and algorithm

论文作者

Mukerjee, Gauthier, Bonachela, Juan A., Muñoz, Miguel A., Wiese, Kay Joerg

论文摘要

通常可以用淬火的爱德华兹 - 威尔金森方程(QEW)来描述弹性系统的膨胀。但是,无法从势能衍生的其他成分(例如非谐和的力和力)可能会在下降时产生不同的缩放行为。实验最相关的是Kardar-Parisi-Zhang(KPZ)项,与每个位点的斜率正方形成正比,这将关键行为驱动到所谓的淬火KPZ(QKPZ)普遍性类别中。我们在数值和分析上研究了这个通用类:通过使用精确的映射,我们表明,至少对于$ d = 1,2 $,此类不仅涵盖了QKPZ方程本身,还包括Anharmonic Depinning和tang和Leschhorn引入的众所周知的蜂窝自动机。我们为所有关键指数(包括雪崩的尺寸和持续时间)开发规模论点。该量表是由限制潜在强度$ m^2 $设定的。这使我们能够以数值方式估计这些指数以及$ m $依赖的有效力相关器$δ(w)$及其相关长度$ρ:=δ(0)/|δ'(0^+)| $。最后,我们提出了一种新算法,以数字估计有效($ m $依赖性)弹性$ c $,以及有效的KPZ非线性$λ$。这使我们能够定义一个无量纲的通用kpz振幅$ {\ cal a}:=ρλ/c $,它在$ d = 1 $中考虑的所有系统中,将值$ {\ cal a} = 1.10(2)$。这证明QKPZ是所有这些模型的有效现场理论。我们的工作为对QKPZ阶级中的含义的更深入了解,尤其是为了建立我们在同伴论文中描述的现场理论的理解铺平了道路。

Depinning of elastic systems advancing on disordered media can usually be described by the quenched Edwards-Wilkinson equation (qEW). However, additional ingredients such as anharmonicity and forces that can not be derived from a potential energy may generate a different scaling behavior at depinning. The most experimentally relevant is the Kardar-Parisi-Zhang (KPZ) term, proportional to the square of the slope at each site, which drives the critical behavior into the so-called quenched KPZ (qKPZ) universality class. We study this universality class both numerically and analytically: by using exact mappings we show that at least for $d=1,2$ this class encompasses not only the qKPZ equation itself, but also anharmonic depinning and a well-known class of cellular automata introduced by Tang and Leschhorn. We develop scaling arguments for all critical exponents, including size and duration of avalanches. The scale is set by the confining potential strength $m^2$. This allows us to estimate numerically these exponents as well as the $m$-dependent effective force correlator $Δ(w)$, and its correlation length $ρ:= Δ(0)/|Δ'(0^+)|$. Finally we present a new algorithm to numerically estimate the effective ($m$-dependent) elasticity $c$, and the effective KPZ non-linearity $λ$. This allows us to define a dimensionless universal KPZ amplitude ${\cal A}:=ρλ/c$, which takes the value ${\cal A}=1.10(2)$ in all systems considered in $d=1$. This proves that qKPZ is the effective field theory for all these models. Our work paves the way for a deeper understanding of depinning in the qKPZ class, and in particular, for the construction of a field theory that we describe in a companion paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源