论文标题

通过操作员sindhorn迭代缩小子空间

Shrunk subspaces via operator Sinkhorn iteration

论文作者

Franks, Cole, Soma, Tasuku, Goemans, Michel X.

论文摘要

埃德蒙兹(Edmonds)问题的最新突破表明,可以在确定性的多项式时间内计算非交通级别,并设计了各种算法。但是,只有很复杂的算法以找到所谓的缩水子空间而闻名,该子空间充当了非交通等级价值的双重证书。特别是,运算符sindhorn算法,也许是使用操作员缩放计算非交通等级的最简单算法,并未找到缩水子空间。找到缩小的子空间在应用中起关键作用,例如在brascamp-lieb polytope中的分离,无效的成员构件问题中的单参数亚组以及用于矩形交叉点和分数曲线型匹配的原始偶发算法。 在本文中,我们提供了一种简单的sndhorn式算法,以在确定性的多项式时间中找到复杂场上最小的缩水子空间。为此,我们介绍了操作员缩放问题的概括,其中边缘的光谱必须由指定的向量进行大量。然后,我们为广义操作员缩放问题设计了有效的sndhorn式算法。将其应用于缩小的子空间问题,我们表明该算法的长期很长,还发现接近最小精确缩减子空间的缩减缩小子空间。最后,我们表明,如果足够接近,则可以将缩减的子空间四舍五入。一路上,我们还提供了一种简单的随机算法,以找到最小的缩水子空间。 作为应用程序,我们设计了一种更快的算法,用于分数线性的矩阵匹配和有效的弱成员资格和rank-2 brascamp-lieb polytope的优化算法。

A recent breakthrough in Edmonds' problem showed that the noncommutative rank can be computed in deterministic polynomial time, and various algorithms for it were devised. However, only quite complicated algorithms are known for finding a so-called shrunk subspace, which acts as a dual certificate for the value of the noncommutative rank. In particular, the operator Sinkhorn algorithm, perhaps the simplest algorithm to compute the noncommutative rank with operator scaling, does not find a shrunk subspace. Finding a shrunk subspace plays a key role in applications, such as separation in the Brascamp-Lieb polytope, one-parameter subgroups in the null-cone membership problem, and primal-dual algorithms for matroid intersection and fractional matroid matching. In this paper, we provide a simple Sinkhorn-style algorithm to find the smallest shrunk subspace over the complex field in deterministic polynomial time. To this end, we introduce a generalization of the operator scaling problem, where the spectra of the marginals must be majorized by specified vectors. Then we design an efficient Sinkhorn-style algorithm for the generalized operator scaling problem. Applying this to the shrunk subspace problem, we show that a sufficiently long run of the algorithm also finds an approximate shrunk subspace close to the minimum exact shrunk subspace. Finally, we show that the approximate shrunk subspace can be rounded if it is sufficiently close. Along the way, we also provide a simple randomized algorithm to find the smallest shrunk subspace. As applications, we design a faster algorithm for fractional linear matroid matching and efficient weak membership and optimization algorithms for the rank-2 Brascamp-Lieb polytope.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源