论文标题
同时$ \ MATHFRAK {P} $ - 订购和等级分布
Simultaneous $\mathfrak{p}$-orderings and equidistribution
论文作者
论文摘要
令$ d $为dedekind域。粗略地说,同时$ \ mathfrak {p} $ - 订购是$ d $的一系列元素,它是$ d $中每个质量理想的每一个prime every of $ d $中的每一个功能。 Bhargava询问Dedekind域的哪个子集同时录取$ \ Mathfrak {p} $ - 订购。我们概述了此问题的进度。我们还解释了它如何与整数有价值的多项式理论相关,并列出了一些开放问题。
Let $D$ be a Dedekind domain. Roughly speaking, a simultaneous $\mathfrak{p}$-ordering is a sequence of elements from $D$ which is equidistributed modulo every power of every prime ideal in $D$ as well as possible. Bhargava asked which subsets of the Dedekind domains admit simultaneous $\mathfrak{p}$-orderings. We give an overview on the progress in this problem. We also explain how it relates to the theory of integer valued polynomials and list some open problems.