论文标题
RT-KGD:关系过渡意识到知识的对话生成
RT-KGD: Relation Transition Aware Knowledge-Grounded Dialogue Generation
论文作者
论文摘要
与外部知识的对话系统是提高响应质量的一种有希望的方法。大多数现有的作品采用知识图(KGS)作为外部资源,关注对话的最后一句话中实体的贡献,以理解和响应产生。然而,在多转变上下文中隐含的知识与kg中关系之间的过渡规律之间所隐含的知识之间的相关性是不足的。为此,我们提出了一个关系过渡意识知识的对话生成模型(RT-KGD)。具体而言,受到人类对话潜在逻辑的启发,我们的模型将对话级别的关系过渡规律与转向级实体语义信息相结合。以这种方式,知识之间的相互作用被认为产生了丰富的线索,以预测适当的知识并产生相干响应。自动评估和手动评估的实验结果表明,我们的模型表现优于最先进的基准。
Grounding dialogue system with external knowledge is a promising way to improve the quality of responses. Most existing works adopt knowledge graphs (KGs) as the external resources, paying attention to the contribution of entities in the last utterance of the dialogue for context understanding and response generation. Nevertheless, the correlations between knowledge implied in the multi-turn context and the transition regularities between relations in KGs are under-explored. To this end, we propose a Relation Transition aware Knowledge-Grounded Dialogue Generation model (RT-KGD). Specifically, inspired by the latent logic of human conversation, our model integrates dialogue-level relation transition regularities with turn-level entity semantic information. In this manner, the interaction between knowledge is considered to produce abundant clues for predicting the appropriate knowledge and generating coherent responses. The experimental results on both automatic evaluation and manual evaluation indicate that our model outperforms state-of-the-art baselines.