论文标题

事件触发时间序列的任务意识相似性学习

Task-aware Similarity Learning for Event-triggered Time Series

论文作者

Dou, Shaoyu, Yang, Kai, Jiao, Yang, Qiu, Chengbo, Ren, Kui

论文摘要

时间序列分析在各种应用程序(例如网络安全,环境监控和医学信息学)等不同应用中取得了巨大成功。在不同时间序列之间学习相似性是一个至关重要的问题,因为它是下游分析(例如聚类和异常检测)的基础。由于事件触发的传感产生的时间序列的复杂时间序列,通常不清楚哪种距离度量适合相似性学习,这在各种应用中很常见,包括自动驾驶,交互式医疗保健和智能家庭自动化。本文的总体目标是开发一个无监督的学习框架,该框架能够在未标记的事件触发的时间序列中学习任务感知的相似性。从机器学习有利位置,提议的框架可以利用层次多尺度序列自动编码器和高斯混合模型(GMM)的功能,以有效地学习时间序列的低维表示。最后,可以轻松地将获得的相似性度量可视化以进行解释。提出的框架愿意提供一块垫脚石,从而引起系统的模型和学习事件触发时间序列之间的相似性。通过广泛的定性和定量实验,据揭示了所提出的方法的表现大大优于最先进的方法。

Time series analysis has achieved great success in diverse applications such as network security, environmental monitoring, and medical informatics. Learning similarities among different time series is a crucial problem since it serves as the foundation for downstream analysis such as clustering and anomaly detection. It often remains unclear what kind of distance metric is suitable for similarity learning due to the complex temporal dynamics of the time series generated from event-triggered sensing, which is common in diverse applications, including automated driving, interactive healthcare, and smart home automation. The overarching goal of this paper is to develop an unsupervised learning framework that is capable of learning task-aware similarities among unlabeled event-triggered time series. From the machine learning vantage point, the proposed framework harnesses the power of both hierarchical multi-scale sequence autoencoders and Gaussian Mixture Model (GMM) to effectively learn the low-dimensional representations from the time series. Finally, the obtained similarity measure can be easily visualized for explaining. The proposed framework aspires to offer a stepping stone that gives rise to a systematic approach to model and learn similarities among a multitude of event-triggered time series. Through extensive qualitative and quantitative experiments, it is revealed that the proposed method outperforms state-of-the-art methods considerably.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源