论文标题

流媒体谣言图的模型敏捷和多样的解释

Model-Agnostic and Diverse Explanations for Streaming Rumour Graphs

论文作者

Nguyen, Thanh Tam, Phan, Thanh Cong, Nguyen, Minh Hieu, Weidlich, Matthias, Yin, Hongzhi, Jo, Jun, Nguyen, Quoc Viet Hung

论文摘要

在社交媒体上传播谣言对社会构成了重要威胁,因此最近提出了各种谣言检测技术。然而,现有的工作重点介绍\ emph {what}实体构成谣言,但几乎没有支持理解\ emph {为什么}实体已被归类为这样。这样可以防止对检测到的谣言以及对策设计的有效评估。在这项工作中,我们认为,可以用过去检测到的相关谣言的例子来给出检测到的谣言的解释。一系列类似的谣言有助于用户概括,即了解控制谣言发现的特性。由于通常使用特征宣传的图表对社交媒体的传播传播通常是建模的,因此我们提出了一种逐个示例的方法,鉴于谣言图,它从过去的谣言中提取了$ k $最相似和多样化的子图。挑战是所有计算都需要快速评估图之间的相似性。为了在流式设置中实现该方法的有效和适应性实现,我们提出了一种新颖的图表学习技术并报告了实施注意事项。我们的评估实验表明,我们的方法在为各种谣言传播行为提供有意义的解释方面优于基线技术。

The propagation of rumours on social media poses an important threat to societies, so that various techniques for rumour detection have been proposed recently. Yet, existing work focuses on \emph{what} entities constitute a rumour, but provides little support to understand \emph{why} the entities have been classified as such. This prevents an effective evaluation of the detected rumours as well as the design of countermeasures. In this work, we argue that explanations for detected rumours may be given in terms of examples of related rumours detected in the past. A diverse set of similar rumours helps users to generalize, i.e., to understand the properties that govern the detection of rumours. Since the spread of rumours in social media is commonly modelled using feature-annotated graphs, we propose a query-by-example approach that, given a rumour graph, extracts the $k$ most similar and diverse subgraphs from past rumours. The challenge is that all of the computations require fast assessment of similarities between graphs. To achieve an efficient and adaptive realization of the approach in a streaming setting, we present a novel graph representation learning technique and report on implementation considerations. Our evaluation experiments show that our approach outperforms baseline techniques in delivering meaningful explanations for various rumour propagation behaviours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源