论文标题
在恶劣环境中,基于多上述和多个安滕纳TOA的稳健车辆定位
Robust Vehicle Positioning based on Multi-Epoch and Multi-Antenna TOAs in Harsh Environments
论文作者
论文摘要
对于在恶劣环境中应用的基于无线电时间的(TOA)定位系统,周围环境和车辆本身的障碍物将阻止锚点的信号,减少可用的TOA测量值的数量,从而降低本地化性能。常规的多腹腔定位技术需要良好的初始化以避免局部最小值,并且由于数量不足的TOA测量值和/或单个时期的锚锚几何形状不足,因此遭受了位置歧义。首先旨在解决MEMA-TOA方法的初始化问题。然后,开发了一个迭代改进步骤,以根据MEMA-SDP初始化获得最佳定位结果。我们得出Cramer-Rao下限(CRLB),以理论上分析新的Mema-Toa方法的准确性,并显示其优于常规单位和多Anti-Antenna(SEMA)定位方法的出色定位性能。模拟环境中的仿真结果表明,i)新的mema-SDP提供了接近实际位置的初始估计,并从经验上保证了最终精制定位解决方案的全局优化性,ii)与常规的SEMA方法相比,新的Mema-Toa方法具有更高的位置准确性而无需位置歧义,与理论分析一致。
For radio-based time-of-arrival (TOA) positioning systems applied in harsh environments, obstacles in the surroundings and on the vehicle itself will block the signals from the anchors, reduce the number of available TOA measurements and thus degrade the localization performance. Conventional multi-antenna positioning technique requires a good initialization to avoid local minima, and suffers from location ambiguity due to insufficient number of TOA measurements and/or poor geometry of anchors at a single epoch. A new initialization method based on semidefinite programming (SDP), namely MEMA-SDP, is first designed to address the initialization problem of the MEMA-TOA method. Then, an iterative refinement step is developed to obtain the optimal positioning result based on the MEMA-SDP initialization. We derive the Cramer-Rao lower bound (CRLB) to analyze the accuracy of the new MEMA-TOA method theoretically, and show its superior positioning performance over the conventional single-epoch and multi-antenna (SEMA) localization method. Simulation results in harsh environments demonstrate that i) the new MEMA-SDP provides an initial estimation that is close to the real location, and empirically guarantees the global optimality of the final refined positioning solution, and ii) compared with the conventional SEMA method, the new MEMA-TOA method has higher positioning accuracy without location ambiguity, consistent with the theoretical analysis.