论文标题

部分可观测时空混沌系统的无模型预测

NOCT: Nonlinear Observability with Constraints and Time Offset

论文作者

Huai, Jianzhu, Lin, Yukai, Zhang, Yujia

论文摘要

非线性控制输入的非线性系统总结了许多传感器融合实例。分析这种非线性系统中的状态变量是否可以估算(即可观察性)为更好的估计器设计提供了信息。在非线性系统局部可观察性的研究中,基于差异几何形状的方法引起了人们对固体理论基础和自动推论的适用性的极大关注。这种方法通常与不受约束的控制输入的系统模型一起使用,并假设控制输入和观察输出由同一时钟时间戳记。据我们所知,尚未显示如何在系统的观察值或控制输入上执行其他约束。为此,我们提出了将具有线性约束的仿射控制输入的系统模型转换为无约束标准模型的系统模型,该模型易于通过经典的可观察性分析程序来分析。然后,通过应用于估算摄像机IMU相对姿势和时间偏移的良好视觉惯性探针(VIO)系统来说明整个分析过程。关于退化运动不可观察的变量的发现与在其他研究中用线性化的VIO系统获得的发现一致,而有关时间偏移可观察到的结果在先前的研究中扩展了这些发现。这些发现将通过仿真进一步验证。

Nonlinear systems of affine control inputs overarch many sensor fusion instances. Analyzing whether a state variable in such a nonlinear system can be estimated (i.e., observability) informs better estimator design. Among the research on local observability of nonlinear systems, approaches based on differential geometry have attracted much attention for the solid theoretic foundation and suitability to automated deduction. Such approaches usually work with a system model of unconstrained control inputs and assume that the control inputs and observation outputs are timestamped by the same clock. To our knowledge, it has not been shown how to conduct the observability analysis with additional constraints enforced on the system's observations or control inputs. To this end, we propose procedures to convert a system model of affine control inputs with linear constraints into a constraint-free standard model which is apt to be analyzed by the classic observability analysis procedure. Then, the whole analysis procedure is illustrated by applying to the well-studied visual inertial odometry (VIO) system which estimates the camera-IMU relative pose and time offset. The findings about unobservable variables under degenerate motion concur with those obtained with linearized VIO systems in other studies, whereas the findings about observability of time offset extend those in previous studies. These findings are further validated by simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源