论文标题

曲线简化和聚类在Fréchet距离下

Curve Simplification and Clustering under Fréchet Distance

论文作者

Cheng, Siu-Wing, Huang, Haoqiang

论文摘要

我们在Fréchet距离下简化曲线和聚类中介绍了新的近似结果。令$ t = \ {τ_i:i \ in [n] \} $为$ m $ $ $ vertices中的$ r^d $中的多边形曲线。令$ l $为$ [m] $的任何整数。我们研究一个广义曲线简化问题:给定错误限制$δ_i> 0 $ for $ i \ in [n] $,在最多$ l $ vertices中找到曲线$σ$,例如$ d_f(σ,τ_i)\leΔ_i$ in [n] $ in [n] $。我们提出了一种算法,该算法最多可以返回$ l $ l $ vertices的null输出或曲线$σ$,以便$ d_f(σ,τ_i)\leΔ_i +δ_i +εδ_ {\ max} $ for $ i \ for $ i \ in [n] $ in [n] $,其中$δ_{\ max max} = $ axmax} $ $ $ $ n]如果输出为零,则最多没有$ l $ $ $ $Δ_i$的曲线,从$τ_i$ for $τ_i$ for $ i \ in [n] $。运行时间为$ \ tilde {o} \ bigl(n^{o(l)} m^{o(l^2)}(dl/ε)^{o(dl)} \ bigr)$。该算法产生了第一个多项式两粒子近似方案,将曲线$τ$简化为另一个曲线$σ$,其中$σ$的顶点可以在$ r^d $中的任何位置,因此$ d_f(σ,σ,τ) \ le(1+α)\ min \ {| c | :d_f(c,τ)\leδ\} $对于任何给定的$δ> 0 $和任何固定的$α,ε\ in(0,1)$。运行时间为$ \ tilde {o} \ bigl(m^{o(1/α)}(d/(αε))^{o(d/α)} \ bigr)$。 通过将我们的技术与文献中的一些先前结果相结合,我们获得了$(k,l)$ - 中间聚类的近似算法。给定的$ t $,它计算$ l $ curves的$ l $顶点的$σ$,以便$ \ sum_ {i \ in [n]} \ min_} \ min_ {σ\ inσ} d_f(σ,τ_i)$在probimimaus of Probimus coptimus coptimus coptimus coptimus contimusy coptimus contimutive coptimuty contimuty Pyptimuty Attimate的$ 1+ε1倍,至少为$ 1- $ 1- $。 (0,1)$。运行时间为$ \ tilde {o} \ bigl(n m^{o(kl^2)}μ^{ - o(kl)}(dkl/ε)^{o(((dkl/ε)\ log log(1/μ)} \ bigr)$。

We present new approximation results on curve simplification and clustering under Fréchet distance. Let $T = \{τ_i : i \in [n] \}$ be polygonal curves in $R^d$ of $m$ vertices each. Let $l$ be any integer from $[m]$. We study a generalized curve simplification problem: given error bounds $δ_i > 0$ for $i \in [n]$, find a curve $σ$ of at most $l$ vertices such that $d_F(σ,τ_i) \le δ_i$ for $i \in [n]$. We present an algorithm that returns a null output or a curve $σ$ of at most $l$ vertices such that $d_F(σ,τ_i) \le δ_i + εδ_{\max}$ for $i \in [n]$, where $δ_{\max} = \max_{i \in [n]} δ_i$. If the output is null, there is no curve of at most $l$ vertices within a Fréchet distance of $δ_i$ from $τ_i$ for $i \in [n]$. The running time is $\tilde{O}\bigl(n^{O(l)} m^{O(l^2)} (dl/ε)^{O(dl)}\bigr)$. This algorithm yields the first polynomial-time bicriteria approximation scheme to simplify a curve $τ$ to another curve $σ$, where the vertices of $σ$ can be anywhere in $R^d$, so that $d_F(σ,τ) \le (1+ε)δ$ and $|σ| \le (1+α) \min\{|c| : d_F(c,τ) \le δ\}$ for any given $δ> 0$ and any fixed $α, ε\in (0,1)$. The running time is $\tilde{O}\bigl(m^{O(1/α)} (d/(αε))^{O(d/α)}\bigr)$. By combining our technique with some previous results in the literature, we obtain an approximation algorithm for $(k,l)$-median clustering. Given $T$, it computes a set $Σ$ of $k$ curves, each of $l$ vertices, such that $\sum_{i \in [n]} \min_{σ\in Σ} d_F(σ,τ_i)$ is within a factor $1+ε$ of the optimum with probability at least $1-μ$ for any given $μ, ε\in (0,1)$. The running time is $\tilde{O}\bigl(n m^{O(kl^2)} μ^{-O(kl)} (dkl/ε)^{O((dkl/ε)\log(1/μ))}\bigr)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源