论文标题

卡本:复合对抗性鲁棒性基准

CARBEN: Composite Adversarial Robustness Benchmark

论文作者

Hsiung, Lei, Tsai, Yun-Yun, Chen, Pin-Yu, Ho, Tsung-Yi

论文摘要

关于对抗攻击方法的先前文献主要集中于与单个威胁模型进行攻击和防御,例如,在LP Ball中遇到的扰动。但是,多个威胁模型可以合并为复合扰动。一种这样的方法,即复合对抗攻击(CAA),不仅扩大了图像的扰动空间,而且还可以通过当前鲁棒性评估模式来忽略。本文展示了CAA的攻击顺序如何影响所得图像,并提供了不同模型的实时推断,这将有助于用户对攻击级别参数的配置及其对模型预测的快速评估。还引入了针对CAA的基准对抗性鲁棒性的排行榜。

Prior literature on adversarial attack methods has mainly focused on attacking with and defending against a single threat model, e.g., perturbations bounded in Lp ball. However, multiple threat models can be combined into composite perturbations. One such approach, composite adversarial attack (CAA), not only expands the perturbable space of the image, but also may be overlooked by current modes of robustness evaluation. This paper demonstrates how CAA's attack order affects the resulting image, and provides real-time inferences of different models, which will facilitate users' configuration of the parameters of the attack level and their rapid evaluation of model prediction. A leaderboard to benchmark adversarial robustness against CAA is also introduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源