论文标题
预选系统和后系统的不确定性关系
Uncertainty Relations in Pre- and Post-Selected Systems
论文作者
论文摘要
在这项工作中,我们得出了Robertson-Heisenberg,例如在预选(PPS)系统中两个不兼容的可观察物的不确定性关系。新定义的标准偏差和PPS系统中的不确定性关系具有我们在此处提出的物理含义。我们使用我们的不确定性关系在PPS系统中演示了两个异常属性。首先,对于可观察到的可观察情况,即使最初准备的状态,即当考虑特定的特定后选择时,PPS系统中不确定性关系的下限也不会变为零。这意味着在这种情况下,两个可观察到的可观察结果会干扰彼此的测量结果,这与罗伯逊 - 海森伯格的不确定性关系完全对比。其次,与标准量子系统不同,PPS系统使得对非交易的可观察物{((在主文本中详细介绍)}迅速准备量子状态(预选前)}。提供了PPS系统中不确定性和不确定性关系的某些应用:$(i)$检测未知状态的混合性,$(ii)$($($ iii $)的不确定性关系,($ iii $)`纯量子不确定性之间的不确定性关系,即在不存在的情况下(即不一致的情况)(即不存在的)(即不存在的),而不是降低的。 $(iv)$状态取决于标准量子系统中的不确定性关系,而$(v)$(v)$更紧密的上限范围用于超级订单相关功能。
In this work, we derive Robertson-Heisenberg like uncertainty relation for two incompatible observables in a pre- and post-selected (PPS) system. The newly defined standard deviation and the uncertainty relation in the PPS system have physical meanings which we present here. We demonstrate two unusual properties in the PPS system using our uncertainty relation. First, for commuting observables, the lower bound of the uncertainty relation in the PPS system does not become zero even if the initially prepared state i.e., pre-selection is the eigenstate of both the observables when specific post-selections are considered. This implies that for such case, two commuting observables can disturb each other's measurement results which is in fully contrast with the Robertson-Heisenberg uncertainty relation. Secondly, unlike the standard quantum system, the PPS system makes it feasible to prepare sharply a quantum state (pre-selection) for non-commuting observables {(to be detailed in the main text)}. Some applications of uncertainty and uncertainty relation in the PPS system are provided: $(i)$ detection of mixedness of an unknown state, $(ii)$ stronger uncertainty relation in the standard quantum system, ($iii$) ``purely quantum uncertainty relation" that is, the uncertainty relation which is not affected (i.e., neither increasing nor decreasing) under the classical mixing of quantum states, $(iv)$ state dependent tighter uncertainty relation in the standard quantum system, and $(v)$ tighter upper bound for the out-of-time-order correlation function.