论文标题
大脑MRI研究使用卷积神经网络和原始计算需求的原始后处理技术进行神经胶质瘤分割研究
Brain MRI study for glioma segmentation using convolutional neural networks and original post-processing techniques with low computational demand
论文作者
论文摘要
神经胶质瘤是由不同高度异质组织学子区域组成的脑肿瘤。鉴定相关肿瘤子结构的图像分析技术具有改善患者诊断,治疗和预后的很高潜力。但是,由于神经胶质瘤的异质性高,分割任务目前是医学图像分析领域的主要挑战。在目前的工作中,研究了由神经胶质瘤的多模式MRI扫描组成的2018年脑肿瘤分割(BRAT)挑战的数据库。提出了基于卷积神经网络(CNN)的设计和应用的分割方法,并结合了原始的后处理技术,其计算需求较低。后处理技术是分割中获得的结果的主要负责。分段区域是整个肿瘤,肿瘤核和增强的肿瘤核,分别获得等于0.8934、0.8376和0.8113的平均骰子系数。这些结果达到了由挑战的获奖者确定的神经胶质瘤分割中最新的。
Gliomas are brain tumors composed of different highly heterogeneous histological subregions. Image analysis techniques to identify relevant tumor substructures have high potential for improving patient diagnosis, treatment and prognosis. However, due to the high heterogeneity of gliomas, the segmentation task is currently a major challenge in the field of medical image analysis. In the present work, the database of the Brain Tumor Segmentation (BraTS) Challenge 2018, composed of multimodal MRI scans of gliomas, was studied. A segmentation methodology based on the design and application of convolutional neural networks (CNNs) combined with original post-processing techniques with low computational demand was proposed. The post-processing techniques were the main responsible for the results obtained in the segmentations. The segmented regions were the whole tumor, the tumor core, and the enhancing tumor core, obtaining averaged Dice coefficients equal to 0.8934, 0.8376, and 0.8113, respectively. These results reached the state of the art in glioma segmentation determined by the winners of the challenge.