论文标题
改进的算法识别完美的图形并找到最短的奇数甚至孔
Improved Algorithms for Recognizing Perfect Graphs and Finding Shortest Odd and Even Holes
论文作者
论文摘要
各种诱导的子图与图理论和图形算法的最深结果有关。一个突出的例子涉及$ g $的{\ em perfection},每个感应子图$ h $的$ g $的色度等于$ h $的集团数量。开创性的完美图定理证实,$ g $的完美可以通过检测$ g $中的奇数及其补充来确定。 Chudnovsky等。在2005年显示$ O(n^9)$算法,用于识别完美图,可以在$ o(n^{6+ω})$ offention $ oω<2.373 $的Square-Matrix乘法中实现。我们显示以下改进的算法。 1。检测奇数的障碍性数十年是开放的,直到Chudnovsky等人的重大突破为止。在2020年。他们的$ O(n^9)$算法后来由Lai等人实施。以$ O(n^8)$时间运行,导致以前最著名的算法识别完美的图形。我们的第一个结果是用于检测奇数的$ O(n^7)$算法,这意味着用于识别完美图的$ O(n^7)$算法。 2。Chudnovsky等。扩展到2021年,用于检测奇数孔(2020)的$ O(n^9)$算法,并识别出第一个用于获得最短奇数孔的多项式算法(2005),该算法以$ O(n^{14})$ o(n^{14})$时间。我们将找到最短的奇数孔的时间减少到$ o(n^{13})$。 3。Conforti等。在1997年展示第一种用于检测均匀孔的多项式算法,以$ O(n^{40})$时间运行。然后,在文献中采取了一系列的努力,将复杂性降低到$ O(n^{31})$,$ O(n^{19})$,$ O(n^{11})$,最后是$ O(N^9)$。另一方面,在2022年,找到最短的孔的障碍已开放16年,直到最近的$ O(N^{31})$算法的算法。我们将找到最短的孔的时间提高到$ O(n^{23})$。
Various classes of induced subgraphs are involved in the deepest results of graph theory and graph algorithms. A prominent example concerns the {\em perfection} of $G$ that the chromatic number of each induced subgraph $H$ of $G$ equals the clique number of $H$. The seminal Strong Perfect Graph Theorem confirms that the perfection of $G$ can be determined by detecting odd holes in $G$ and its complement. Chudnovsky et al. show in 2005 an $O(n^9)$ algorithm for recognizing perfect graphs, which can be implemented to run in $O(n^{6+ω})$ time for the exponent $ω<2.373$ of square-matrix multiplication. We show the following improved algorithms. 1. The tractability of detecting odd holes was open for decades until the major breakthrough of Chudnovsky et al. in 2020. Their $O(n^9)$ algorithm is later implemented by Lai et al. to run in $O(n^8)$ time, leading to the best formerly known algorithm for recognizing perfect graphs. Our first result is an $O(n^7)$ algorithm for detecting odd holes, implying an $O(n^7)$ algorithm for recognizing perfect graphs. 2. Chudnovsky et al. extend in 2021 the $O(n^9)$ algorithms for detecting odd holes (2020) and recognizing perfect graphs (2005) into the first polynomial algorithm for obtaining a shortest odd hole, which runs in $O(n^{14})$ time. We reduce the time for finding a shortest odd hole to $O(n^{13})$. 3. Conforti et al. show in 1997 the first polynomial algorithm for detecting even holes, running in about $O(n^{40})$ time. It then takes a line of intensive efforts in the literature to bring down the complexity to $O(n^{31})$, $O(n^{19})$, $O(n^{11})$, and finally $O(n^9)$. On the other hand, the tractability of finding a shortest even hole has been open for 16 years until the very recent $O(n^{31})$ algorithm of Cheong and Lu in 2022. We improve the time of finding a shortest even hole to $O(n^{23})$.