论文标题

通过乘法更新包装覆盖LP的动态算法

Dynamic Algorithms for Packing-Covering LPs via Multiplicative Weight Updates

论文作者

Bhattacharya, Sayan, Kiss, Peter, Saranurak, Thatchaphol

论文摘要

在动态线性程序(LP)问题中,我们为我们提供了一个LP进行更新,我们需要维护大约最佳的解决方案。最近,非常关注(例如[Gupta等人Stoc'17; Arar等人ICALP'18,WAJC Stoc'20])已致力于研究动态包装和覆盖LPS的特殊案例,例如动态分数匹配和设置覆盖问题。但是到目前为止,对于一般包装和覆盖LPS,还没有非平凡的动态算法。 在本文中,我们解决了动态包装和覆盖LPS的复杂性,在更新时间中最多达到了一个多毛体因子。更确切地说,在部分动态设置(更新只能放松或仅限于可行区域),我们给出了近乎最佳的确定性$ε$ - $ - approximation算法,并带有polyrogarithmic amortizatized更新时间。然后,我们证明两者都需要部分动态更新和摊销更新时间;没有任何这些条件,假设塞思(Seth)在每个更新本质上都可以最好地从头开始重新计算解决方案的琐碎算法。 为了获得我们的结果,我们在动态设置中启动了对乘法更新(MWU)方法的系统研究。作为我们技术的副产品,我们还获得了第一个在线$(1+ε)$ - 竞争性算法,用于覆盖和包装LPS,带有Polyogarithmic rockiress,以及用于覆盖和包装LP的第一个流式传输算法,该算法具有线性空间和Polyrogarithmic Passes。

In the dynamic linear program (LP) problem, we are given an LP undergoing updates and we need to maintain an approximately optimal solution. Recently, significant attention (e.g., [Gupta et al. STOC'17; Arar et al. ICALP'18, Wajc STOC'20]) has been devoted to the study of special cases of dynamic packing and covering LPs, such as the dynamic fractional matching and set cover problems. But until now, there is no non-trivial dynamic algorithm for general packing and covering LPs. In this paper, we settle the complexity of dynamic packing and covering LPs, up to a polylogarithmic factor in update time. More precisely, in the partially dynamic setting (where updates can either only relax or only restrict the feasible region), we give near-optimal deterministic $ε$-approximation algorithms with polylogarithmic amortized update time. Then, we show that both partially dynamic updates and amortized update time are necessary; without any of these conditions, the trivial algorithm that recomputes the solution from scratch after every update is essentially the best possible, assuming SETH. To obtain our results, we initiate a systematic study of the multiplicative weights update (MWU) method in the dynamic setting. As by-products of our techniques, we also obtain the first online $(1+ε)$-competitive algorithms for both covering and packing LPs with polylogarithmic recourse, and the first streaming algorithms for covering and packing LPs with linear space and polylogarithmic passes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源