论文标题
通过Koopman Spectra稳定的不变模型
Stable Invariant Models via Koopman Spectra
论文作者
论文摘要
重型模型引起了神经网络现代发展的关注。深度平衡模型(DEQ)代表具有重量趋势的无限深度神经网络,最近的研究表明了这种方法的潜力。需要迭代解决训练中的根发现问题,并建立在模型确定的基础动力学基础上,需要DEQ。在本文中,我们介绍了稳定的不变模型(SIM),这是一种新的深层模型,原理在稳定性下近似DEQ,并将动力学扩展到更一般的动力学,从而收敛到不变的集合(不受固定点的限制)。得出SIMS的关键要素是用Koopman和Perron--Frobenius操作员的光谱表示动力学的一种。该视角大致揭示了用DEQS揭示稳定的动力学,然后衍生了两个SIMS的变体。我们还提出了可以以与前馈模型相同的方式学习的模拟人生的实现。我们通过实验说明了SIMS的经验表现,并证明了SIMS在几个学习任务中对DEQ的比较或出色的表现。
Weight-tied models have attracted attention in the modern development of neural networks. The deep equilibrium model (DEQ) represents infinitely deep neural networks with weight-tying, and recent studies have shown the potential of this type of approach. DEQs are needed to iteratively solve root-finding problems in training and are built on the assumption that the underlying dynamics determined by the models converge to a fixed point. In this paper, we present the stable invariant model (SIM), a new class of deep models that in principle approximates DEQs under stability and extends the dynamics to more general ones converging to an invariant set (not restricted in a fixed point). The key ingredient in deriving SIMs is a representation of the dynamics with the spectra of the Koopman and Perron--Frobenius operators. This perspective approximately reveals stable dynamics with DEQs and then derives two variants of SIMs. We also propose an implementation of SIMs that can be learned in the same way as feedforward models. We illustrate the empirical performance of SIMs with experiments and demonstrate that SIMs achieve comparative or superior performance against DEQs in several learning tasks.