论文标题
系统的核不确定性对紧凑型二元合并中动力和磁盘喷射的组成和衰减热的影响
Impact of systematic nuclear uncertainties on composition and decay heat of dynamical and disk ejecta in compact binary mergers
论文作者
论文摘要
从理论上预测,由快速中子捕获过程(R-)过程产生的元素产量可能具有与核性质不完整的知识以及物质弹出过程的近似流体动力学建模相关的大型不确定性。我们通过改变了描述实验未知的富含中子核的理论核输入模型,对核不确定性进行了深入研究。这包括两个用于计算辐射性中子捕获率的框架和14个不同模型的核质量,$β$ - 订单率和裂变特性。我们的R过程核网络计算基于NS-NS或NS-BH二进制合并的动态弹出材料的详细流体动力学模拟以及BH-Torus Systems的世俗喷射。发现核不确定性对R过程的丰度分布和早期放射性加热率的影响很小(在单个$ a> 90 $的$ a> 90 $丰度的$ \ sim20 $中,加热率为2倍)。但是,对延迟加热率的影响更为重要,并且在很大程度上取决于裂变的贡献。如果仅使用单个轨迹与考虑$ \ sim $ \ sim $ 200-300轨迹相比,我们对核物理输入的敏感性明显更大,并且核不确定性的定量效应很大程度上取决于对个体轨迹的采用条件。我们使用预测的TH/U比估计六个金属贫困星的宇宙学年龄,并发现核不确定性的影响最高为2 GYR。
Theoretically predicted yields of elements created by the rapid neutron capture (r-) process carry potentially large uncertainties associated with incomplete knowledge of nuclear properties and approximative hydrodynamical modelling of the matter ejection processes. We present an in-depth study of the nuclear uncertainties by varying theoretical nuclear input models that describe the experimentally unknown neutron-rich nuclei. This includes two frameworks for calculating the radiative neutron capture rates and 14 different models for nuclear masses, $β$-decay rates and fission properties. Our r-process nuclear network calculations are based on detailed hydrodynamical simulations of dynamically ejected material from NS-NS or NS-BH binary mergers plus the secular ejecta from BH-torus systems. The impact of nuclear uncertainties on the r-process abundance distribution and the early radioactive heating rate is found to be modest (within a factor of $\sim20$ for individual $A>90$ abundances and a factor of 2 for the heating rate). However, the impact on the late-time heating rate is more significant and depends strongly on the contribution from fission. We witness significantly larger sensitivity to the nuclear physics input if only a single trajectory is used compared to considering ensembles of $\sim$200-300 trajectories, and the quantitative effects of the nuclear uncertainties strongly depend on the adopted conditions for the individual trajectory. We use the predicted Th/U ratio to estimate the cosmochronometric age of six metal-poor stars and find the impact of the nuclear uncertainties to be up to 2 Gyr.