论文标题

灵活的全球预测组合

Flexible global forecast combinations

论文作者

Thompson, Ryan, Qian, Yilin, Vasnev, Andrey L.

论文摘要

预测组合 - 来自多个专家或模型的个人预测的汇总 - 是一种经过验证的经济预测方法。迄今为止,对经济预测的研究集中在本地组合方法上,这些方法孤立地处理了单独但相关的预测任务。然而,在机器学习社区中,已经闻名了二十年来,利用与任务相关的全球方法可以改善忽略它的本地方法。本文以改进的可能性为动机,引入了一个框架,用于全球结合预测,同时又可以灵活地达到与任务相关的水平。通过我们的框架,我们开发了几种现有预测组合的全球版本。为了评估这些新的全球预测组合的功效,我们使用合成和真实数据进行了广泛的比较。我们的实际数据比较涉及欧元区中核心经济指标的预测,提供了经验证据,表明全球经济预测的准确性可以超过当地组合。

Forecast combination -- the aggregation of individual forecasts from multiple experts or models -- is a proven approach to economic forecasting. To date, research on economic forecasting has concentrated on local combination methods, which handle separate but related forecasting tasks in isolation. Yet, it has been known for over two decades in the machine learning community that global methods, which exploit task-relatedness, can improve on local methods that ignore it. Motivated by the possibility for improvement, this paper introduces a framework for globally combining forecasts while being flexible to the level of task-relatedness. Through our framework, we develop global versions of several existing forecast combinations. To evaluate the efficacy of these new global forecast combinations, we conduct extensive comparisons using synthetic and real data. Our real data comparisons, which involve forecasts of core economic indicators in the Eurozone, provide empirical evidence that the accuracy of global combinations of economic forecasts can surpass local combinations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源