论文标题
在大动量有效理论中,横向摩托明依赖性波函数和软功能
Transverse-momentum-dependent wave functions and Soft functions at one-loop in Large Momentum Effective Theory
论文作者
论文摘要
在大型摩肌有效理论(LAMET)中,可以从四夸克形式和均等相关函数的仿真中提取横向摩托依赖性(TMD)轻波函数和软函数。在这项工作中,使用区域扩展,我们提供了形式的TMD分解的一环证明。对于单环验证,我们还提供了$ {\ cal o}(α_s)$扰动校正这些数量的详细计算,在该量中,我们采用了现代技术来计算TMD形式的基于零件和微分方程的集成。然后提取一环硬函数。使用来自Quasi-TMDWF的晶格Parton协作的晶格数据,我们估算了一环匹配内核的效果,发现扰动校正取决于操作员来定义形式,但对横向分离的敏感性较小。这些结果将有助于精确提取未来第一原则的软功能和TMD波函数。
In large-momentum effective theory (LaMET), the transverse-momentum-dependent (TMD) light-front wave functions and soft functions can be extracted from the simulation of a four-quark form factor and equal-time correlation functions. In this work, using expansion by regions we provide a one-loop proof of TMD factorization of the form factor. For the one-loop validation, we also present a detailed calculation of ${\cal O}(α_s)$ perturbative corrections to these quantities, in which we adopt a modern technique for the calculation of TMD form factor based the integration by part and differential equation. The one-loop hard functions are then extracted. Using lattice data from Lattice Parton Collaboration on quasi-TMDWFs, we estimate the effects from the one-loop matching kernel and find that the perturbative corrections depend on the operator to define the form factor, but are less sensitive to the transverse separation. These results will be helpful to precisely extract the soft functions and TMD wave functions from the first-principle in future.