论文标题

实际数字的单项基础:简单的基础,不规则基础和多个理性

Univoque bases of real numbers: simply normal bases, irregular bases and multiple rationals

论文作者

Hu, Yu, Huang, Yan, Kong, Derong

论文摘要

给定一个正整数$ m $和一个实际数字$ x \ in(0,1] $,我们称$ q \ in(1,m+1] $是univoque,如果存在独特的正常序列$(d_i)\ in \ in \ in \ {0,1,\ ldots,m \},​​m \}^\ nath $ nater of $ x $,则为$ x $。 $ x = \ sum_ {i = 1}^\ infty d_i q^{ - i} $。 $ x = \ sum_ {i = 1}^\ infty d_i q^{ - i} $,序列$(d_i)$没有数字频率本文我们表明,对于任何$ x \ in(0,1] $均$ \ Mathcal u_ {sn}(x)$和$ \ Mathcal u_ {i_r}(x)$具有完整的Hausdorff尺寸。此外,给出了许多合理的$ x_1,x_2,x_2,x_2,x__n $ $ x_n $ a $ x_n $ a $ x_n $基本$ m+1 $的扩展,我们表明存在一个完整的Hausdorff尺寸集,$ q \ in(1,m+1] $,因此每个$ x_i $都具有基本$ Q $的独特扩展。

Given a positive integer $M$ and a real number $x\in(0,1]$, we call $q\in(1,M+1]$ a univoque simply normal base of $x$ if there exists a unique simply normal sequence $(d_i)\in\{0,1,\ldots,M\}^\mathbb N$ such that $x=\sum_{i=1}^\infty d_i q^{-i}$. Similarly, a base $q\in(1,M+1]$ is called a univoque irregular base of $x$ if there exists a unique sequence $(d_i)\in\{0,1,\ldots, M\}^\mathbb N$ such that $x=\sum_{i=1}^\infty d_i q^{-i}$ and the sequence $(d_i)$ has no digit frequency. Let $\mathcal U_{SN}(x)$ and $\mathcal U_{I_r}(x)$ be the sets of univoque simply normal bases and univoque irregular bases of $x$, respectively. In this paper we show that for any $x\in(0,1]$ both $\mathcal U_{SN}(x)$ and $\mathcal U_{I_r}(x)$ have full Hausdorff dimension. Furthermore, given finitely many rationals $x_1, x_2, \ldots, x_n\in(0,1]$ so that each $x_i$ has a finite expansion in base $M+1$, we show that there exists a full Hausdorff dimensional set of $q\in(1,M+1]$ such that each $x_i$ has a unique expansion in base $q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源