论文标题
Tschirnhausen捆绑包的稳定性
Stability of Tschirnhausen Bundles
论文作者
论文摘要
令$α:x \ y $为一般学位$ r $原始地图,在特征零或大于$ r $的特征性零或大于$ r $的代数封闭的字段上,非单词,不可约,投影曲线。我们证明,如果$ g(y)\ geq 1 $,则可以半固定的tschirnhausen捆绑包,如果$ g(y)\ geq 2 $,则可以稳定。
Let $α: X \to Y$ be a general degree $r$ primitive map of nonsingular, irreducible, projective curves over an algebraically closed field of characteristic zero or larger than $r$. We prove that the Tschirnhausen bundle of $α$ is semistable if $g(Y) \geq 1$ and stable if $g(Y) \geq 2$.