论文标题

使用概率软逻辑在对话中的情感识别

Emotion Recognition in Conversation using Probabilistic Soft Logic

论文作者

Augustine, Eriq, Jandaghi, Pegah, Albalak, Alon, Pryor, Connor, Dickens, Charles, Wang, William, Getoor, Lise

论文摘要

创建可以对对话做出适当反应又理解复杂的人类语言倾向和社会线索的代理人在NLP社区中一直是一项艰巨的挑战。最近的研究支柱围绕着对话中的情感识别(ERC);情感识别的子场地,重点是包含两个或多个话语的对话或对话。在这项工作中,我们探讨了一种ERC的方法,该方法利用了神经嵌入的使用以及对话中复杂的结构。我们在称为概率软逻辑(PSL)的框架中实现了我们的方法,该框架是一种使用逻辑规则的一阶模板语言,当与数据结合使用时,定义了特定类别的图形模型。此外,PSL为将神经模型的结果纳入PSL模型提供了功能。这使我们的模型可以利用先进的神经方法,例如句子嵌入以及对话结构的逻辑推理。我们将方法与最新的纯神经ERC系统进行了比较,并且几乎改善了20%。通过这些结果,我们对DailyDialog对话数据集提供了广泛的定性和定量分析。

Creating agents that can both appropriately respond to conversations and understand complex human linguistic tendencies and social cues has been a long standing challenge in the NLP community. A recent pillar of research revolves around emotion recognition in conversation (ERC); a sub-field of emotion recognition that focuses on conversations or dialogues that contain two or more utterances. In this work, we explore an approach to ERC that exploits the use of neural embeddings along with complex structures in dialogues. We implement our approach in a framework called Probabilistic Soft Logic (PSL), a declarative templating language that uses first-order like logical rules, that when combined with data, define a particular class of graphical model. Additionally, PSL provides functionality for the incorporation of results from neural models into PSL models. This allows our model to take advantage of advanced neural methods, such as sentence embeddings, and logical reasoning over the structure of a dialogue. We compare our method with state-of-the-art purely neural ERC systems, and see almost a 20% improvement. With these results, we provide an extensive qualitative and quantitative analysis over the DailyDialog conversation dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源