论文标题
一项关于不同均质性湍流中惯性颗粒的沉降速度的实验研究
An experimental study on the settling velocity of inertial particles in different homogeneous isotropic turbulent flows
论文作者
论文摘要
我们提出了一项有关在不同背景湍流下密集的,亚基莫格罗夫惯性颗粒的重力沉降速度的实验研究。我们报告了在均匀种子的低速风隧道中的相多普勒颗粒分析仪测量值。湍流是由三个不同的网格产生的(两个由不同的活动网格协议组成,而第三个是常规的静态网格),从而使我们能够在基于泰勒级的雷诺数字($re_λ\ in [30-520] $),rouse number($ rouse nume)($ rouse in [0-5] $ fractions($ ros fractions)方面($re_λ\),涵盖了非常广泛的湍流条件($re_λ\ \ in [0.5 \ times10^{ - 5} -2.0 \ times10^{ - 5}] $)。我们发现,与以前的作品一致,增强沉降速度的增强发生在低劳斯数量,而阻碍沉降则以较高的劳斯数量发生,以降低湍流能量水平。探索的广泛流参数范围使我们能够观察到,随着泰勒·雷诺数的数量,增强参数显着降低,并且受体积分数$ ϕ_v $的影响很大。我们还研究了大规模强迫对沉降速度修改的影响。使用不同的网格改变流入条件的可能性使我们能够用固定的$re_λ$和湍流强度但整体长度尺度不同。最后,我们评估了风隧道中的二次流及其在粒子沉降中的作用。这是通过表征两个不同位置的沉降速度来实现的,即中心线并靠近壁,并具有相同的流向坐标。
We propose an experimental study on the gravitational settling velocity of dense, sub-Kolmogorov inertial particles under different background turbulent flows. We report Phase Doppler Particle Analyzer measurements in a low-speed wind tunnel uniformly seeded with micrometer scale water droplets. Turbulence is generated with three different grids (two consisting on different active-grid protocols while the third is a regular static grid), allowing us to cover a very wide range of turbulence conditions in terms of Taylor-scale based Reynolds numbers ($Re_λ\in [30-520]$), Rouse numbers ($Ro \in [0-5]$) and volume fractions ($ϕ_v \in[0.5\times10^{-5} - 2.0\times10^{-5}]$). We find, in agreement with previous works, that enhancement of the settling velocity occurs at low Rouse number, while hindering of the settling occurs at higher Rouse number for decreasing turbulence energy levels. The wide range of flow parameters explored allowed us to observe that enhancement decreases significantly with the Taylor Reynolds number and is significantly affected by the volume fraction $ϕ_v$. We also studied the effect of large-scale forcing on settling velocity modification. The possibility of changing the inflow conditions by using different grids allowed us to test cases with fixed $Re_λ$ and turbulent intensity but different integral length scale. Finally, we assess the existence of secondary flows in the wind tunnel and their role on particle settling. This is achieved by characterising the settling velocity at two different positions, the centreline and close to the wall, with the same streamwise coordinate.