论文标题
用内源数量的机器排队游戏
Queueing games with an endogenous number of machines
论文作者
论文摘要
本文研究了有或没有初始队列的内源性机器数量的排队问题,新颖的是联盟不仅选择排队,而且选择了多少机器。对于给定的问题,代理可以(DE)以一定的代价激活尽可能多的机器。在最大程度地减少了总成本(处理成本和机器成本)之后,我们使用游戏理论方法来共享此合作的收益,并研究稳定分配的存在。首先,我们研究了内源数量机器的排队问题,并研究如何分担总成本。我们在机器成本上提供了上限和下限,以保证核心的非空置(稳定分配的集合)。接下来,我们研究存在现有队列的内源性机器数量的必需问题。当最佳申请/更改计算机数量时,我们研究了如何与初始情况相比分享成本节省。尽管通常不存在稳定的分配,但我们保证当所有机器都被视为公共物品时,我们保证存在稳定的分配,并且我们从可能没有最佳机器数量的初始时间表开始,但是首先处理具有大量等待费用的代理商。
This paper studies queueing problems with an endogenous number of machines with and without an initial queue, the novelty being that coalitions not only choose how to queue, but also on how many machines. For a given problem, agents can (de)activate as many machines as they want, at a cost. After minimizing the total cost (processing costs and machine costs), we use a game theoretical approach to share to proceeds of this cooperation, and study the existence of stable allocations. First, we study queueing problems with an endogenous number of machines, and examine how to share the total cost. We provide an upper bound and a lower bound on the cost of a machine to guarantee the non-emptiness of the core (the set of stable allocations). Next, we study requeueing problems with an endogenous number of machines, where there is an existing queue. We examine how to share the cost savings compared to the initial situation, when optimally requeueing/changing the number of machines. Although, in general, stable allocation may not exist, we guarantee the existence of stable allocations when all machines are considered public goods, and we start with an initial schedule that might not have the optimal number of machines, but in which agents with large waiting costs are processed first.