论文标题

部分可观测时空混沌系统的无模型预测

K-level Reasoning for Zero-Shot Coordination in Hanabi

论文作者

Cui, Brandon, Hu, Hengyuan, Pineda, Luis, Foerster, Jakob N.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The standard problem setting in cooperative multi-agent settings is self-play (SP), where the goal is to train a team of agents that works well together. However, optimal SP policies commonly contain arbitrary conventions ("handshakes") and are not compatible with other, independently trained agents or humans. This latter desiderata was recently formalized by Hu et al. 2020 as the zero-shot coordination (ZSC) setting and partially addressed with their Other-Play (OP) algorithm, which showed improved ZSC and human-AI performance in the card game Hanabi. OP assumes access to the symmetries of the environment and prevents agents from breaking these in a mutually incompatible way during training. However, as the authors point out, discovering symmetries for a given environment is a computationally hard problem. Instead, we show that through a simple adaption of k-level reasoning (KLR) Costa Gomes et al. 2006, synchronously training all levels, we can obtain competitive ZSC and ad-hoc teamplay performance in Hanabi, including when paired with a human-like proxy bot. We also introduce a new method, synchronous-k-level reasoning with a best response (SyKLRBR), which further improves performance on our synchronous KLR by co-training a best response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源