论文标题
具有增强的生物腐蚀性的磁控管溅射无毒和无元素的无元素Ti-Zr-ge金属玻璃纳米膜
Magnetron Sputtered Non-Toxic and Precious Element-Free Ti-Zr-Ge Metallic Glass Nanofilms with Enhanced Biocorrosion Resistance
论文作者
论文摘要
高级合金的化学组成和结构状态是最佳生物医学性能的决定性因素。该贡献提出了独特的Ti-Zr-ge金属玻璃薄膜组合物,该胶片由磁铁溅射靶向用于预防纳米涂层的磁铁沉积。带有纳米级粗糙度的无定形纳米膜表现出较大的松弛和超冷的液体区域,如闪光差扫描量热法所示。 Ti\textsubscript{68}Zr\textsubscript{8}Ge\textsubscript{24} shows the lowest corrosion (0.17 \textmu A cm\textsuperscript{\textminus2}) and passivation (1.22 \textmu A cm\textsuperscript{\textminus2}) current \ textminus0.648 V的腐蚀潜力最低的密度和远程稳定性,可抵抗凹陷,证实了其在37 {\ textDegree} c时在磷酸盐缓冲溶液中的出色性能。氧化物层由Tio \ TextSubScript {2},Tio \ TextSubscript {\ Emph {X}}和Zro \ textSubscript {\ emphscript {\ emph {x}},用作x射线光电子光谱通过短期ion-ion-ion-etss efters efters surface surface surface surface surface surface surface surface surface serpers surface surface serpers surface surface surface surface surface surface。氧化物和界面电阻的两个数量级增加(从14到1257 {\ textomega} cm \ textsuperscript {2}),以及氧化物界面的电容参数的数量级下降(从1.402 x 10 \ textsuperscript {\ textsuperscript {\ textsuperscript { 10 \ textsuperscript {\ textminus6} s s \ textsuperscript {n} cm \ textsuperscript {\ textminus2})相同的组成链接到线性扫描过程中羰基组的形成和本机氧化物层的减少。
The chemical composition and structural state of advanced alloys are the decisive factors in optimum biomedical performance. This contribution presents unique Ti-Zr-Ge metallic glass thin-film compositions fabricated by magnetron sputter deposition targeted for nanocoatings for biofouling prevention. The amorphous nanofilms with nanoscale roughness exhibit a large relaxation and supercooled liquid regions as revealed by flash differential scanning calorimetry. Ti\textsubscript{68}Zr\textsubscript{8}Ge\textsubscript{24} shows the lowest corrosion (0.17 \textmu A cm\textsuperscript{\textminus2}) and passivation (1.22 \textmu A cm\textsuperscript{\textminus2}) current densities, with the lowest corrosion potential of \textminus0.648 V and long-range stability against pitting, corroborating its excellent performance in phosphate buffer solution at 37 {\textdegree}C. The oxide layer is comprised of TiO\textsubscript{2}, TiO\textsubscript{\emph{x}} and ZrO\textsubscript{\emph{x}}, as determined using X-ray photoelectron spectroscopy by short-term ion-etching of the surface layer. The two orders of magnitude increase in the oxide and interface resistance (from 14 to 1257 {\textOmega} cm\textsuperscript{2}) along with an order of magnitude decrease in the capacitance parameter of the oxide interface (from 1.402 x 10\textsuperscript{\textminus5} to 1.677 x 10\textsuperscript{\textminus6} S s\textsuperscript{n} cm\textsuperscript{\textminus2}) of the same composition is linked to the formation of carbonyl groups and reduction of the native oxide layer during linear sweep voltammetry.