论文标题

通过冲击波和不均匀介质的相互作用的湍流磁场扩增

Turbulent Magnetic Field Amplification by the Interaction of Shock Wave and Inhomogeneous Medium

论文作者

Hu, Yue, Xu, Siyao, Stone, James M., Lazarian, Alex

论文摘要

在年轻超新星残留物中观察到的100 $ $ g的磁场不能仅通过冲击压缩来扩增。为了研究由湍流发电机引起的扩增,我们对冲击波与不均匀密度分布之间与浅谱中的浅谱之间的相互作用进行了三维MHD模拟。震后的湍流主要由最强的前对比度驱动,并遵循kolmogorov缩放。产生的湍流会放大后震动磁场。磁场的时间演变与Xu&Lazarian(2016)中非线性湍流词汇理论的预测一致。当初始弱磁场垂直于休克正常情况时,该场强度的最大扩增可达到$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \的两倍,比平行冲击大两倍。我们发现,垂直冲击比平行冲击在冲击阵线附近表现出较小的湍流Alfvén马赫数。但是,最强的磁场具有较低的体积填充因子,并且由于在湍流和磁化流体中进行的重新连接扩散而受到湍流的限制。沿$ z $轴平均的磁场强度减少了$ \ gtrsim10 $的因子。我们将湍流速度和磁场分解为电磁阀和压缩模式。螺线管模式是主导的,即使前霍克密度分布具有较浅的光谱,也会遵循Kolmogorov缩放。当Preshock密度分布具有Kolmogorov光谱时,湍流速度的压缩成分会增加。

Magnetic fields on the order of 100 $μ$G observed in young supernova remnants cannot be amplified by shock compression alone. To investigate the amplification caused by turbulent dynamo, we perform three-dimensional MHD simulations of the interaction between shock wave and inhomogeneous density distribution with a shallow spectrum in the preshock medium. The postshock turbulence is mainly driven by the strongest preshock density contrast and follows the Kolmogorov scaling. The resulting turbulence amplifies the postshock magnetic field. The time evolution of the magnetic fields agrees with the prediction of the nonlinear turbulent dynamo theory in Xu & Lazarian (2016). When the initial weak magnetic field is perpendicular to the shock normal, the maximum amplification of the field's strength achieves a factor of $\approx200$, which is twice larger than that for a parallel shock. We find that the perpendicular shock exhibits a smaller turbulent Alfvén Mach number in the vicinity of the shock front than the parallel shock. However, the strongest magnetic field has a low volume filling factor and is limited by the turbulent energy due to the reconnection diffusion taking place in a turbulent and magnetized fluid. The magnetic field strength averaged along the $z$-axis is reduced by a factor $\gtrsim10$. We decompose the turbulent velocity and magnetic field into solenoidal and compressive modes. The solenoidal mode is dominant and evolves to follow the Kolmogorov scaling, even though the preshock density distribution has a shallow spectrum. When the preshock density distribution has a Kolmogorov spectrum, the turbulent velocity's compressive component increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源