论文标题

无限发育的投影空间的实现的实现的共同体

The Real-oriented cohomology of infinite stunted projective spaces

论文作者

Balderrama, William

论文摘要

令$ e \ mathbb {r} $为一个均匀的真实landweber精确$ c_2 $ -spectrum和$ er $的固定点频谱。我们计算了无限发育的投影光谱$ P_J $的$ er $ - 酒精学。这些共同体组的组合结合形成$ ro(C_2)$ - $ C_2 $ -Spectrum $ b(er)= f(ec_ {2+},i_ \ ast er)$的分级系数环,我们显示的是$ e \ e \ e \ mathbb {r} $ right y Mathbb {r} $ p(ER) e \ mathbb {r} $。我们用计算一些基于$ $ $的Mahowald不变性的计算来说明$π_\ star b(er)$的描述。

Let $E\mathbb{R}$ be an even-periodic Real Landweber exact $C_2$-spectrum, and $ER$ its spectrum of fixed points. We compute the $ER$-cohomology of the infinite stunted projective spectra $P_j$. These cohomology groups combine to form the $RO(C_2)$-graded coefficient ring of the $C_2$-spectrum $b(ER) = F(EC_{2+},i_\ast ER)$, which we show is related to $E\mathbb{R}$ by a cofiber sequence $Σ^σb(ER)\rightarrow b(ER)\rightarrow E\mathbb{R}$. We illustrate our description of $π_\star b(ER)$ with the computation of some $ER$-based Mahowald invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源