论文标题
SEMEVAL-2022任务11:在语义上模棱两可的设置低资源语言中的复杂NER
Multilinguals at SemEval-2022 Task 11: Complex NER in Semantically Ambiguous Settings for Low Resource Languages
论文作者
论文摘要
我们利用预培训的语言模型来解决两种低资源语言的复杂NER任务:中文和西班牙语。我们使用整个单词掩码(WWM)的技术来提高大型和无监督的语料库的掩盖语言建模目标。我们在微调的BERT层之上进行多个神经网络体系结构,将CRF,Bilstms和线性分类器结合在一起。我们所有的模型都优于基线,而我们的最佳性能模型在盲目测试集的评估排行榜上获得了竞争地位。
We leverage pre-trained language models to solve the task of complex NER for two low-resource languages: Chinese and Spanish. We use the technique of Whole Word Masking(WWM) to boost the performance of masked language modeling objective on large and unsupervised corpora. We experiment with multiple neural network architectures, incorporating CRF, BiLSTMs, and Linear Classifiers on top of a fine-tuned BERT layer. All our models outperform the baseline by a significant margin and our best performing model obtains a competitive position on the evaluation leaderboard for the blind test set.