论文标题

重新访问来自网络阅读行为的兴趣指标,用于隐式用户建模

Revisiting Interest Indicators Derived from Web Reading Behavior for Implicit User Modeling

论文作者

Augstein, Mirjam, Schönböck, Johannes, Lettner, Christina, Altmann, Josef

论文摘要

如今,网络上的智能用户界面通常以推荐服务的形式出现,为个人用户量身定制内容。诸如新闻文章之类的Web内容的建议通常需要一定数量的明确评级,以允许令人满意的结果,即选择与用户实际相关的内容的选择。但是,此类明确评级的收集是耗时的,并且取决于用户定期提供所需信息的意愿。因此,使用隐式兴趣指标可以是仅依靠明确输入信息的有用补充。网络上阅读行为的分析可能是推导这种隐式指标的基础。先前的工作已经确定了几个指标,并讨论了如何将它们用作用户模型的基础。但是,大多数早期的工作要么具有概念性,而且不涉及研究建议的概念或依赖于同时可能过时的技术。对该主题的所有早期讨论都有共同的共同点,即他们尚未考虑移动环境。本文以较早的工作为基础,但是提供了有关技术和网络阅读环境的重大更新,从而区分了桌面和移动设置。此更新还使我们能够确定迄今尚未讨论的一组新指标。本文介绍了(i)我们的技术工作,这是分析用户与浏览器互动的框架,依靠最新的Web技术,(ii)我们重新审视或新确定的隐含兴趣指标,以及(iii)网络阅读行为的在线研究结果,作为我们与96名参与者进行兴趣的基础。

Today, intelligent user interfaces on the web often come in form of recommendation services tailoring content to individual users. Recommendation of web content such as news articles often requires a certain amount of explicit ratings to allow for satisfactory results, i.e., the selection of content actually relevant for the user. Yet, the collection of such explicit ratings is time-consuming and dependent on users' willingness to provide the required information on a regular basis. Thus, using implicit interest indicators can be a helpful complementation to relying on explicitly entered information only. Analysis of reading behavior on the web can be the basis for the derivation of such implicit indicators. Previous work has already identified several indicators and discussed how they can be used as a basis for user models. However, most earlier work is either of conceptual nature and does not involve studies to prove the suggested concepts or relies on meanwhile potentially outdated technology. All earlier discussions of the topic further have in common that they do not yet consider mobile contexts. This paper builds upon earlier work, however providing a major update regarding technology and web reading context, distinguishing between desktop and mobile settings. This update also allowed us to identify a set of new indicators that so far have not yet been discussed. This paper describes (i) our technical work, a framework for analyzing user interactions with the browser relying on latest web technologies, (ii) the implicit interest indicators we either revisited or newly identified, and (iii) the results of an online study on web reading behavior as a basis for derivation of interest we conducted with 96 participants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源