论文标题
Bertin:使用困惑抽样的西班牙语模型的有效预培训
BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling
论文作者
论文摘要
在计算和数据方面,大型语言模型的预培训通常需要大量资源。经常使用的Web源(例如Common Crawl)可能包含足够的噪声,以使这种训练前的次级优化。在这项工作中,我们尝试了西班牙语版本的MC4的不同采样方法,并提出了一种新颖的以数据为中心的技术,我们将其命名为$ \ textIt {Perplexity sampling} $,该技术可以在大约一半的步骤中预先培训语言模型,并使用一五分之一的数据进行培训。最终的模型与当前的最新机构相当,甚至可以为某些任务获得更好的结果。我们的工作证明了变形金刚的多功能性,并为小型团队以有限的预算培训模型铺平了道路。我们的模型可在此$ \ href {https://huggingface.co/bertin-project} {url} $中获得。
The pre-training of large language models usually requires massive amounts of resources, both in terms of computation and data. Frequently used web sources such as Common Crawl might contain enough noise to make this pre-training sub-optimal. In this work, we experiment with different sampling methods from the Spanish version of mC4, and present a novel data-centric technique which we name $\textit{perplexity sampling}$ that enables the pre-training of language models in roughly half the amount of steps and using one fifth of the data. The resulting models are comparable to the current state-of-the-art, and even achieve better results for certain tasks. Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget. Our models are available at this $\href{https://huggingface.co/bertin-project}{URL}$.