论文标题

部分可观测时空混沌系统的无模型预测

Comparing the latent space of generative models

论文作者

Asperti, Andrea, Tonelli, Valerio

论文摘要

潜在矢量生成模型的潜在空间中数据点的不同编码可能会导致数据背后的不同解释因素的效率或多或少有效且分开的特征。最近,许多作品致力于探索特定模型的潜在空间的探索,主要集中在研究特征如何脱离的研究以及如何在可见空间中产生所需的数据变化的轨迹。在这项工作中,我们解决了比较不同模型的潜在空间的更一般问题,寻找它们之间的转换。我们将调查局限于人脸数据歧管的熟悉且在很大程度上研究的生成模型案例。本文报道的令人惊讶的初步结果是(前提是(前提是模型尚未被教授或明确想象以不同的方式采取行动)简单的线性映射足以从潜在空间传递到另一个信息,同时保留大多数信息。

Different encodings of datapoints in the latent space of latent-vector generative models may result in more or less effective and disentangled characterizations of the different explanatory factors of variation behind the data. Many works have been recently devoted to the explorationof the latent space of specific models, mostly focused on the study of how features are disentangled and of how trajectories producing desired alterations of data in the visible space can be found. In this work we address the more general problem of comparing the latent spaces of different models, looking for transformations between them. We confined the investigation to the familiar and largely investigated case of generative models for the data manifold of human faces. The surprising, preliminary result reported in this article is that (provided models have not been taught or explicitly conceived to act differently) a simple linear mapping is enough to pass from a latent space to another while preserving most of the information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源