论文标题

次优$ S $ UNION familes和$ s $ UNION抗矢量空间的敌

Suboptimal $s$-union familes and $s$-union antichains for vector spaces

论文作者

Shan, Yunjing, Zhou, Junling

论文摘要

让$ v $是有限字段$ \ mathbb {f} _ {q} $上的$ n $维矢量空间,然后让$ \ mathcal {l}(v)= \ bigCup_ {0 \ leq k \ leq k \ leq n} \一个子空间$ \ MATHCAL {f} \ subseteq \ Mathcal {l}(v)$是$ s $ Union,如果DIM $(f+f')\ leq s $保留所有$ f $,$ f $,$ f'\ in \ mathcal in \ mathcal {f} $。一个家庭$ \ MATHCAL {F} \ subseteq \ Mathcal {l}(v)$是抗小节,如果$ f \ nleq f'$持有任何两个不同的$ f,f'\ in \ mathcal {f} $。 Frankl和Tokushige在$ \ Mathcal {l}(v)$中以$ \ Mathcal {l}(v)$中的最佳$ s $ UNION家族取决于$ 2013 $。最近,弗兰克尔(Frankl)建立了$ \ mathcal {l}(v)$的$ s $ union $(s <n)$ andichains的红衣主教上限,而弗兰克尔(Frankl)最近建立了,而最佳的结构尚未显示。本文确定了所有用于矢量空间的次最佳$ s $ UNION家庭,然后调查$ S $ UNION敌金。对于$ s = n $或$ s = 2d <n $,我们完全确定所有最佳和次优$ s $ s $ sy-inion抗小节。对于$ s = 2d+1 <n $,我们证明了最佳抗小键要么是$ \ weft [v \ at d \ right] $,要么包含在$ \ weft [v \ at d \ at d \ right] \ bigcup \ bigcup \ weft [v \ at pop d+1 \ right] $,这使与阴影相关的平等满足。

Let $V$ be an $n$-dimensional vector space over the finite field $\mathbb{F}_{q}$, and let $\mathcal{L}(V)=\bigcup_{0\leq k\leq n}\left[V\atop k\right]$ be the set of all subspaces of $V$. A family of subspaces $\mathcal{F}\subseteq \mathcal{L}(V)$ is $s$-union if dim$(F+F')\leq s$ holds for all $F$, $F'\in\mathcal{F}$. A family $\mathcal{F}\subseteq \mathcal{L}(V)$ is an antichain if $F\nleq F'$ holds for any two distinct $F, F'\in \mathcal{F}$. The optimal $s$-union families in $\mathcal{L}(V)$ have been determined by Frankl and Tokushige in $2013$. The upper bound of cardinalities of $s$-union $(s<n)$ antichains in $\mathcal{L}(V)$ has been established by Frankl recently, while the structures of optimal ones have not been displayed. The present paper determines all suboptimal $s$-union families for vector spaces and then investigates $s$-union antichains. For $s=n$ or $s=2d<n$, we determine all optimal and suboptimal $s$-union antichains completely. For $s=2d+1<n$, we prove that an optimal antichain is either $\left[V\atop d\right]$ or contained in $\left[V\atop d\right]\bigcup \left[V\atop d+1\right]$ which satisfies an equality related with shadows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源