论文标题
实时检测基于应用程序攻击的行为模型
Behavioral Model For Live Detection of Apps Based Attack
论文作者
论文摘要
具有应用程序平台的智能手机正在引起广泛的关注和受欢迎程度。大量使用不同的应用程序为众多的安全威胁铺平了道路。这些威胁以攻击形式,例如许可控制攻击,网络钓鱼攻击,间谍软件攻击,僵尸网络,恶意软件攻击,隐私泄漏攻击。此外,其他漏洞包括应用程序的无效授权,妥协数据的机密性,无效的访问控制。在本文中,提出了基于应用程序的攻击建模和攻击检测。由于新的攻击漏洞,根据智能手机上的应用执行确定了漏洞。攻击建模涉及最终用户脆弱的应用程序来启动攻击。弱势应用程序安装在智能手机的背景端,最终用户隐藏的可见性。从而访问机密信息。检测模型涉及基于应用程序的行为模型分析(ABMA)方案的提议技术来解决攻击模型。该模型结合了基于应用程序的比较参数分析以执行入侵检测过程。通过使用功率,电池级别和数据使用的参数来估算ABMA。基于源Internet可访问性,使用三种不同的配置AS,WiFi,移动数据和两者的组合进行分析。模拟结果验证并证明了所提出的模型的有效性。
Smartphones with the platforms of applications are gaining extensive attention and popularity. The enormous use of different applications has paved the way to numerous security threats. The threats are in the form of attacks such as permission control attacks, phishing attacks, spyware attacks, botnets, malware attacks, privacy leakage attacks. Moreover, other vulnerabilities include invalid authorization of apps, compromise on the confidentiality of data, invalid access control. In this paper, an application-based attack modeling and attack detection is proposed. Due to A novel attack vulnerability is identified based on the app execution on the smartphone. The attack modeling involves an end-user vulnerable application to initiate an attack. The vulnerable application is installed at the background end on the smartphone with hidden visibility from the end-user. Thereby, accessing the confidential information. The detection model involves the proposed technique of an Application-based Behavioral Model Analysis (ABMA) scheme to address the attack model. The model incorporates application-based comparative parameter analysis to perform the process of intrusion detection. The ABMA is estimated by using the parameters of power, battery level, and the data usage. Based on the source internet accessibility, the analysis is performed using three different configurations as, WiFi, mobile data, and the combination of the two. The simulation results verify and demonstrates the effectiveness of the proposed model.