论文标题
连续的面部运动脱毛
Continuous Facial Motion Deblurring
论文作者
论文摘要
我们引入了一个新颖的框架,用于连续的面部运动脱毛,该框架通过矩控制因子恢复了单个运动毛的脸部图像中潜在的连续锋利力矩。尽管动作毛刺图像是在曝光时间内连续锋利矩的累积信号,但大多数现有的单个图像脱毛方法旨在使用多个网络和训练阶段恢复固定数量的帧。为了解决这个问题,我们提出了一个基于GAN(CFMD-GAN)的连续面动态脱毛网络,该网络是一个新颖的框架,用于恢复具有单个网络和单个训练阶段的单个运动性面部图像中潜在的连续力矩。为了稳定网络培训,我们训练发电机以使用面部特定于域的知识确定的基于面部运动的重新排序过程(FMR)确定的顺序恢复连续矩。此外,我们提出了一个辅助回归器,该回归器通过估计连续锋利的力矩来帮助我们的发电机产生更准确的图像。此外,我们引入了一个控制自适应(CONTADA)块,该块执行空间变形的卷积和频道的注意,作为控制因子的函数。 300VW数据集上的大量实验表明,所提出的框架通过改变力矩控制因子来生成各种连续的输出帧。与最近使用相同300VW训练集训练的最近的单一单一图像脱蓝色网络相比,提出的方法显示了在感知指标(包括LPIPS,FID和Arcface身份距离)方面恢复中央尖锐框架的出色性能。所提出的方法的表现优于现有的定性和定量比较的现有单一视频脱毛方法。
We introduce a novel framework for continuous facial motion deblurring that restores the continuous sharp moment latent in a single motion-blurred face image via a moment control factor. Although a motion-blurred image is the accumulated signal of continuous sharp moments during the exposure time, most existing single image deblurring approaches aim to restore a fixed number of frames using multiple networks and training stages. To address this problem, we propose a continuous facial motion deblurring network based on GAN (CFMD-GAN), which is a novel framework for restoring the continuous moment latent in a single motion-blurred face image with a single network and a single training stage. To stabilize the network training, we train the generator to restore continuous moments in the order determined by our facial motion-based reordering process (FMR) utilizing domain-specific knowledge of the face. Moreover, we propose an auxiliary regressor that helps our generator produce more accurate images by estimating continuous sharp moments. Furthermore, we introduce a control-adaptive (ContAda) block that performs spatially deformable convolution and channel-wise attention as a function of the control factor. Extensive experiments on the 300VW datasets demonstrate that the proposed framework generates a various number of continuous output frames by varying the moment control factor. Compared with the recent single-to-single image deblurring networks trained with the same 300VW training set, the proposed method show the superior performance in restoring the central sharp frame in terms of perceptual metrics, including LPIPS, FID and Arcface identity distance. The proposed method outperforms the existing single-to-video deblurring method for both qualitative and quantitative comparisons.