论文标题
部分可观测时空混沌系统的无模型预测
Few-Shot Specific Emitter Identification via Deep Metric Ensemble Learning
论文作者
论文摘要
特定的发射极标识(SEI)是物理层身份验证的高潜在技术,它是上层身份验证的最关键补充之一。 SEI基于电路差的射频(RF)特征,而不是密码学。这些功能是硬件电路的固有特征,很难伪造。最近,已经提出了各种基于深度学习(DL)的常规SEI方法,并实现了高级性能。但是,提出了这些方法,用于使用大量的RF信号样本进行训练的近距离场景,并且在训练样本有限的情况下,它们的性能较差。因此,我们将重点放在通过自动依赖的监视广播(ADS-B)信号来识别飞机识别的几个SEI(FS-SEI),并根据深度度量集合学习(DMEL)提出了一种新颖的FS-SEI方法。具体而言,所提出的方法包括特征嵌入和分类。前者基于具有复杂价值的卷积神经网络(CVCNN)的度量学习,用于提取具有紧凑的类别内距离和可分离类别间距离的区分特征,而后者则由集合分类器实现。仿真结果表明,如果每个类别的样本数量超过5,则我们提出的方法的平均准确性高于98 \%。此外,特征可视化证明了我们提出的方法在可区分性和概括方面的优势。本文的代码可以从GitHub(https://github.com/beechburgpiestar/few-shot-specific-emitter-emitter-istifification-iendification-via-deep-metric-setemble-learning)下载。
Specific emitter identification (SEI) is a highly potential technology for physical layer authentication that is one of the most critical supplement for the upper-layer authentication. SEI is based on radio frequency (RF) features from circuit difference, rather than cryptography. These features are inherent characteristic of hardware circuits, which difficult to counterfeit. Recently, various deep learning (DL)-based conventional SEI methods have been proposed, and achieved advanced performances. However, these methods are proposed for close-set scenarios with massive RF signal samples for training, and they generally have poor performance under the condition of limited training samples. Thus, we focus on few-shot SEI (FS-SEI) for aircraft identification via automatic dependent surveillance-broadcast (ADS-B) signals, and a novel FS-SEI method is proposed, based on deep metric ensemble learning (DMEL). Specifically, the proposed method consists of feature embedding and classification. The former is based on metric learning with complex-valued convolutional neural network (CVCNN) for extracting discriminative features with compact intra-category distance and separable inter-category distance, while the latter is realized by an ensemble classifier. Simulation results show that if the number of samples per category is more than 5, the average accuracy of our proposed method is higher than 98\%. Moreover, feature visualization demonstrates the advantages of our proposed method in both discriminability and generalization. The codes of this paper can be downloaded from GitHub(https://github.com/BeechburgPieStar/Few-Shot-Specific-Emitter-Identification-via-Deep-Metric-Ensemble-Learning)