论文标题

部分可观测时空混沌系统的无模型预测

A Spatio-Temporal Dirichlet Process Mixture Model for Coronavirus Disease-19

论文作者

Park, Jaewoo, Yi, Seorim, Chang, Won, Mateu, Jorge

论文摘要

了解2019年冠状病毒病的时空模式(COVID-19)对于建立公共卫生干预措施至关重要。与经常遇到的汇总计数数据相比,空间引用的数据可以提供更丰富的机会来了解疾病扩散的机制。我们提出了一个时空的dirichlet工艺混合模型,以分析城市环境中证实的COVID-19病例。我们的方法可以检测出流行病的未观察到的群集中心,并估计群集的时空范围,这些群集可用于构建警告系统。此外,我们的模型可以衡量城市中不同类型的地标的影响,这为疾病从不同时间点提供了直观的解释。为了有效地捕获疾病模式的时间动力学,我们采用了一种顺序方法,该方法将参数的后验分布作为上一个时间步长作为当前时间步长的先前信息。这种方法使我们能够以计算有效的方式将时间依赖性纳入模型,而不会使模型结构复杂化。我们还通过将数据与理论密度进行比较,并概述了我们拟合模型的拟合度来开发模型评估。

Understanding the spatio-temporal patterns of the coronavirus disease 2019 (COVID-19) is essential to construct public health interventions. Spatially referenced data can provide richer opportunities to understand the mechanism of the disease spread compared to the more often encountered aggregated count data. We propose a spatio-temporal Dirichlet process mixture model to analyze confirmed cases of COVID-19 in an urban environment. Our method can detect unobserved cluster centers of the epidemics, and estimate the space-time range of the clusters that are useful to construct a warning system. Furthermore, our model can measure the impact of different types of landmarks in the city, which provides an intuitive explanation of disease spreading sources from different time points. To efficiently capture the temporal dynamics of the disease patterns, we employ a sequential approach that uses the posterior distribution of the parameters for the previous time step as the prior information for the current time step. This approach enables us to incorporate time dependence into our model in a computationally efficient manner without complicating the model structure. We also develop a model assessment by comparing the data with theoretical densities, and outline the goodness-of-fit of our fitted model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源